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Abstract

This chapter is concerned with the stability enhancement of a power system using
power system stabilizers (PSSs) designed based on four evolutionary algorithms
(EAs), namely, genetic algorithms (GAs), breeder genetic algorithm (BGA),
population-based incremental learning (PBIL), and differential evolution (DE). GAs
have been widely applied in many fields of engineering and science and have shown to
be a robust and powerful adaptive search algorithm. However, GAs are known to have
several limitations. To deal with these limitations, many variant forms of GAs have
been suggested often tailored to specific problems. In this research, we investigated
the performances of GA-PSS and three other EAs-based PSSs (i.e., BGA-PSS and
PBIL-PSS and DE-PSS) in improving the small-signal stability of a power system.
These EAs have been selected on the basis of their simplicity, efficiency, and
effectiveness in solving the optimization problem at hand. Frequency domain and
time-domain simulation results show that DE-PSS, PBIL-PSS, and BGA-PSS
performed better than GA-PSS. Time domain simulations suggest that overall, DE-PSS
performs better than PBIL-PSS and BGA-PSS in terms of undershoot and subsequent
swings, albeit with a relatively large first swing overshoot. The performances of
BGA-PSS and PBIL-PSS are similar. On the other hand, GA-PSS gives a better
response than the conventional PSS (CPSS).

Keywords: breeder genetic algorithm, damping ratio, genetic algorithms, differential
evolution, low-frequency oscillations, power-system stabilizer, population-based
incremental learning

1. Introduction

Over the past decades, low-frequency oscillatory modes have been a major concern
to power system engineers [1]. These oscillatory modes ranging from 0.1 to 3 Hz tend
to be poorly damped especially in moderately to heavily loaded systems that are
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equipped with high gain, fast-acting automatic voltage regulators (AVRs) [2, 3]. Gen-
erally, we distinguish two main oscillation modes: local and inter-area modes. Local
modes (0.8–2 Hz) involve local generators oscillating against each other. On the other
hand, inter-area modes are caused by groups of generators in one part of the system
swinging against other groups in the interconnected power system having frequencies
ranging from 0.1 Hz to 0.8 Hz. Compared to local modes, inter-area modes are
generally the most critical modes that need to be damped [4, 5]. These modes are
found in almost all interconnected power stems. If they are not adequately damped,
the oscillations may sustain and grow, and this may lead to system blackout. Power
system stabilizers (PSSs) have been proposed to modulate low-frequency oscillations
and increase the damping of electromechanical modes [1, 2]. Tuning the PSS param-
eters is not a trivial task. Power utilities have preferred using conventional PSSs
(CPSSs) designed around a nominal operating condition. The design of the CPSS is
generally based on conventional control approaches such as root locus, phase com-
pensation, and pole placement techniques [1–5]. However, since these approaches are
not robust, the designed CPSS tends to deviate from optimal operation when the
system experiences a range of changes away from the nominal operating conditions.
Therefore, new design approaches are required to design a PSS that can operate
optimally under a wide range of operating conditions [3, 6]. Evolutionary algo-
rithms (EAs) such as genetic algorithms (GAs) [7–12], differential evolution (DE)
and its variants [13, 14], particle swarm optimization (PSO) [15], population-based
incremental learning (PBIL) [16–19], and breeder genetic algorithms (BGA)
[11, 20–24] are efficient heuristic search methods that are capable of solving com-
plex optimization problems. They do not require the objective function to have
properties such as continuity, smoothness, and differentiability. They have many
advantages over traditional optimization methods and have attracted considerable
attention in recent years. Many of these methods have been applied to power
system damping controller design with encouraging results. In particular, GAs have
been extensively used to solve global optimization problems in academia and are
now being accepted by some industries [9]. DE, PBIL, and BGA are easy to imple-
ment yet efficient and robust in solving optimization problems. Therefore, they are
considered in this work.

GAs are biologically motivated adaptive systems based on natural selection and
genetics. GAs are generally used to solve optimization problems by the exploitation of
a random search [7, 8]. Although GAs are seen to be robust and powerful adaptive
search mechanisms, they have several drawbacks [9]. One of these drawbacks is
related to “genetic drift.” This phenomenon prevents GAs from maintaining diversity
in their population. Other issues include the nonexistence of theoretical guidance for
selecting optimal GA parameters such as population size, crossover, and mutation
rates. Moreover, the natural selection approach used by GAs is not immune from
failure [22]. Breeder genetic algorithm (BGA) has been proposed to cope with some of
these drawbacks. It applies almost the same ideas as in GA, except that it is based on
artificial selection as practiced in animal breeding rather than using natural selection
based on Darwinian evolution [23, 24]. Artificial selection (selective breeding) refers
to the intentional breeding for certain qualities or a combination of qualities [23]. This
is in contrast with the natural selection that is the process whereby organisms survive
and produce offspring by naturally adapting to their environment. Generally, indi-
viduals in BGA are represented as real numbers instead of binary or integers. The
main advantage of using BGA over GA is its simplicity in the selection method and the
fewer parameters. The major limitation of this algorithm is that there is a likelihood of
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premature convergence that could lead BGA to converge to the local optimum rather
than the global one. To deal with the problem of premature convergence, an adaptive
mutation is used [23, 24]. In this case, the mutation rate is not fixed but varies
according to the convergence and performance of the population. This is the type of
BGA that will be discussed later in this chapter.

Population-based incremental learning (PBIL) is a combination of GA and com-
petitive learning. It extends the features of the evolutionary genetic algorithm (EGA)
through the reexamination of the performance of the GA in terms of competitive
learning [16–19]. It was originally proposed by Baluja [18, 19]. In PBIL, the crossover
operator is removed, and the role of the population is redefined. PBIL works on
probabilistic vectors (PVs), which control the random bit strings generated by PBIL.
The PVs are used to create other vectors through competitive learning. The PV is then
updated to increase the likelihood of producing solutions corresponding to the current
best individual. It has been shown that PBIL is simpler than GA and in many cases
performs better than GA and has less overhead [11, 16–19].

Differential evolution (DE) is a powerful stochastic optimizer whose search mech-
anism involves a differential mutation technique [12, 13, 25]. The algorithm is both
simple and robust, with several variants exhibiting different tradeoffs between
convergence speed and robustness. Most often DE outperforms its counterparts in
efficiency and robustness [12–14, 25].

This chapter discusses the optimal design of power system stabilizers (PSSs) using
four evolutionary algorithm (EAs) techniques, namely, genetic algorithms (GAs),
breeder genetic algorithm (BGA) with adaptive mutation, population-based incre-
mental learning (PBIL), and differential evolution (DE). For comparison purposes, the
conventional PSS (CPSS) is also included in this work. The performance and effec-
tiveness of the PSSs in damping the electromechanical modes are investigated using
both frequency-domain analysis and time-domain simulations. Simulation results
show that all the EA-based PSSs (GA-PSS, BGA-PSS, PBIL-PSS, and DE-PSS) perform
better than the CPSS for all the operating conditions considered. Frequency domain
simulation suggests that DE-PSS, PBIL-PSS, and BGA-PSS have similar performances
in terms of the damping ratios that they provided. Time-domain simulations however
suggest that overall, DE-PSS performs slightly better than PBIL-PSS and BGA-PSS in
terms of undershoot and subsequent swings, albeit with a slightly large 1st swing
overshoot. GA-PSS is shown to give the worst performance amount to the EAs. The
chapter is organized as follows: Sections 2–4 present the overview of BGA, PBIL, and
DE, respectively; Section 5 discusses the system model; Section 6 is concerned with the
objective function; Section 7 presents the design of the PSSs; Section 8 discusses the
simulation results; and the conclusions are presented in Section 9.

2. Overview of breeder genetic algorithm

As discussed previously, breeder genetic algorithm (BGA) is similar to genetic
algorithms (GAs), with the exception that it uses artificial selection and has fewer
genetic parameters. Also, BGA uses real-valued representation as opposed to GAs that
mainly use binary and sometimes floating or integer representation. BGA is a versatile
and effective function optimizer. It has the advantage of being simpler than GA. To
deal with the issue of premature convergence that is common with BGA, a modified
version of BGA called adaptive mutation BGA is used in this work [11, 20, 23]. In the
truncation selection method that has been adopted, the T% of the fittest individuals is
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selected from the current population ofN individuals and goes through recombination
and mutation to form the next generation. The rest of the individuals are discarded. In
the truncation method, the fittest individual in the population is automatically part of
the next generation. The other top T%-1 goes through recombination and mutation to
form the rest of the individuals in the next generation. The process is repeated until an
optimal solution is obtained or the maximum number of iterations has been reached.

2.1 Recombination

Recombination is similar to a crossover in GAs. The adaptive mutation BGA pro-
posed in this work allows various possible recombination methods to be used, each of
them searching the space with a particular bias. Because we do not have prior knowl-
edge as to which bias is likely to suit the optimization task, it is better to include
several recombination methods and allow selection to do the elimination. Two
recombination methods were used in this work: volume and line recombination [11].

In volume recombination, a random vector ri equal to the parents’ length is
generated and the child ci is produced by the following expression:

ci ¼ riai þ 1� rið Þbi (1)

Where ci is a component of the child, ai and bi are the two respective parent
components, and ri is a random vector component.

The child can be said to be located at a point inside the hyper box defined by the
parents as shown in Figure 1.

In line recombination, a single uniformly random number r is generated between 0
and 1, and the child is obtained as shown below [23].

ci ¼ rai þ 1� rð Þbi (2)

Where ci, ai, and bi are defined as in Eq. (1).

2.2 Adaptive mutation

As mentioned before, one of the main concerns in GA has been the issue of
premature convergence. This issue is also encountered in the classical BGA. This
problem can be reduced in BGA by using an adaptive mutation [11, 21, 23]. The

Figure 1.
Volume recombination.
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diversity in the population is preserved by adding small, normally distributed zero-
mean random numbers to each child before inserting it into the population. The
random numbers have a certain standard deviation R [18]. The value of R should be
selected carefully because it is critical in determining the convergence of the optimi-
zation. If the value of R is too small, the solution might result in premature conver-
gence, while a high value of R might be detrimental to the optimal convergence of the
algorithm [11, 23]. The adaptive mutation method proposed here allows us to deter-
mine the appropriate value of R. To achieve this, the population is divided into two
halves, P1 and P2. P1 is assigned a mutation rate of double R (2R), while P2 is assigned
a mutation rate of half R (R/2). The mutation rate R is adjusted depending on the
performance of each half of the population (P1 or P2). If P1 gives better and fitter
individuals, the mutation rate is increased by a certain percentage (10% in this case);
similarly, if P2 produces better and fitter individuals, then the mutation rate gets
reduced by a similar percentage. The pseudo code for BGA with adaptive learning can
be found in [11, 23].

3. Overview of population-based incremental learning algorithm

Population-based incremental learning (PBIL) is a combination of competitive
learning derived from artificial neural networks and genetic algorithms [18, 19].
There is no crossover operator in PBIL, instead, the probability vector is updated
using a solution with the highest fitness values [18]. The values of the probability
vector are initially set to 0.5 to ensure that the probability of generating 0 or 1 is
equal. As the search progresses, these values are moved away from 0.5, toward either
0.0 or 1.0.

3.1 Learning rate

Learning in PBIL is based on using the current probability distribution to create N
individuals. The probability vector is updated using the best individual so far, thereby
increasing the probability of producing solutions similar to the current best solutions.
Learning rate is required to update the probability vector. The selection of the learning
rate value should be made with care as it determines how fast or slow the prototype
vector is shifted toward the best individuals. A larger rate speeds up convergence, but
it reduces the function space to be searched, while a smaller rate will slow down the
convergence, even though it increases the exploration of a bigger search space,
thereby increasing the likelihood of better optimal solutions. The (positive) update
rule of the probability vector is given as:

PV i ¼ 1� LRð ÞPV i þ LRð ÞBi (3)

where PV is the probability vector, LR ∈ [0 1] is the learning rate, B is the best
solution, and i denotes each locus (i = 1, 2, … l) where l is the binary encoding length.

3.2 Mutation

Like in GA, the mutation is used in PBIL to maintain diversity in the population.
Mutation in PBIL can be performed in two ways: either on the sample solutions
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generated or on the PV. In this study, the mutation is performed on the PV; a
forgetting factor is used to relax the probability vector toward a neutral value of 0.5
[11, 16, 17] as shown in the equation below.

PV i ¼ PV i � FF PV i � 0:5ð Þ (4)

where FF is the forgetting factor that was chosen to be 0.005.
The pseudo code for PBIL can be found in [17–19].

4. Overview of differential evolution

Differential evolution (DE) can be defined as a parallel direct search method that
uses a population of points to search for a global minimum or maximum of a function
over a wide search space [13]. It is a simple and efficient adaptive scheme for global
optimization over continuous space. DE is designed to efficiently solve non-
differentiable and nonlinear functions and yet retains its simplicity and good conver-
gence to a global optimum [12]. Similar to most EAs, DE explores the search space by
maintaining a population of candidate solutions and by using Darwinian evolution
theory to direct its search toward prospective areas. The candidates with better fitness
values survive and enter the next generation [12–14, 25]. The process continues until
the termination criterion is satisfied. It should be mentioned that DE has proved to be
one of the best among EAs. It was able to secure competitive rankings in CEC compe-
titions [25]. One of the main advantages of DE over GA is the mutation scheme and
the selection process. Unlike GAs where the best solutions are selected for the next
generation, in DE, all solutions have an equal chance of being selected as parents
independently of their fitness values.

4.1 Mutation

In the context of DE, “mutation” is defined as a process of taking a small random
sample of vectors from the current population and combining them algebraically to
form a new vector, which is referred to as a mutant vector [12, 13]. In the so-called
classical version of DE, the mutant vector is formed as follows:

V i,g ¼ Xr1,g þ F Xr2,g � Xr3,g

� �

(5)

where i, r1, r2, and r3 are all distinct indices in the interval [1, Np]. The mutation
scale factor F is a positive real number between 0 and 2 that controls the rate at which
the population evolves [13]. The vector Xr1 is the base vector, while Xr2 � Xr3 is the
difference vector, g = 0, 1, … gmax are the generations and Np is the population.

The above process is repeated Np-times to constitute a mutant population. In the
classical version, each base vector is used only once per generation, in order to
preserve diversity in the population. The classical version described above is desig-
nated as “DE/rand/1” and is widely used, although it has the drawback of relatively
slow convergence [12]. Some alternative mutation strategies to the classical version
are given below [12–14, 25]:

DE/best/1: This strategy resembles DE/rand/1, except that all mutants use the best
vector in the current generation as the base vector:
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V i,g ¼ Xbest,g þ F Xr1,g � Xr2,g

� �

(6)

where Xr1 and Xr2 are distinct random vectors and Xbest is the best individual in the
current population.

This strategy has faster convergence than DE/rand/1, but often fails to reach the
global optimum [12].

DE/best/2: This strategy uses two mutation differences to create a mutant vector:

Vi,g ¼ Xbest,g þ F Xr1,g � Xr2,g

� �

þ F Xr3,g � Xr4,g

� �

(7)

where Xr1,Xr2,Xr3, and Xr4 are distinct random vectors and Xbest is the best indi-
vidual in the current population. This strategy attempts to balance between conver-
gence speed and robustness. However, it may still converge to a local but non-global
optimum due to the fact that the base vector Xbest draws the population toward
itself [13].

DE/local-to-best/2: This strategy resembles DE/best/2 in that two mutation differ-
ences are used, but the base vector is randomly sampled and the “best” vector is used
in one of the scaled differences:

Vi,g ¼ Xr1,g þ F Xbest,g � Xr2,g

� �

þ F Xr3,g � Xr4,g

� �

(8)

This approach has similar convergence properties to DE/best/2 [13].
DE/rand/2: This strategy samples 5 random vectors in the current generation to

form two random differences that are scaled and added to the base vector:

Vi,g ¼ Xr1,g þ F Xr2,g � Xr3,g

� �

þ F Xr4,g � Xr5,g

� �

(9)

where, r1 6¼ r2 6¼ r3 6¼ r4 6¼ r5. This approach converges more slowly but is very
robust [13].

DE/rand/2 has been used in this work due to our objective to appropriately tune
the PSS with optimal time constants values for a robust performance.

4.2 Crossover

In DE, “crossover” refers to the process of creating a new vector (called the trial
vector) by combining a mutant vector with a target vector [13]. The target vector for the
mutant vector Vi,g is Xi,g. The trial vector Ui ¼ u1,i, u2,i … , uD,i½ �, is then obtained as
follows:

uj,i,g ¼
vj,i,g if randj 0, 1ð Þ≤CR or j ¼ jrand

� �

, j ¼ 1, 2, … ,D

xj,i,g otherwise

(

(10)

where CR∈ 0, 1½ � is the crossover probability, and CR is the fraction of the parameter
values that are copied from the mutant vector, and 1-CR is the fraction of parameter
values copied from the trial vector. To determine whether the parameter to be copied
is from the mutant or trial vector, a uniformly-distributed random number, randj
between [0, 1] is generated and compared to the predefined value of CR. In addition, a

random index jrand ∈ 1,Np

� �

is chosen and the corresponding mutant parameter is
copied to ensure that the trial vector is not a duplicate of the target vector.
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4.3 Selection

This process consists of choosing the individuals that will enter the next genera-
tion. DE employs a “one-to-one survivor selection,” which consists of comparing each
trial vector to its corresponding target vector. Mathematically, the vector Xi,g + 1 in the
g + 1’th generation is obtained from the trial vector Ui,g and target vector Xi,g as
follows in the case of a minimization problem:

Xi,gþ1 ¼
Ui,gif f Ui,g

� �

≤ f Xi,g

� �

Xi,g otherwise

(

(11)

This process ensures that the best vector at each index is retained. Furthermore,
this also guarantees that the very best-so-far solution is kept. Once the selection is
performed for all target vectors in the current generation g, the processes of mutation,
crossover, and selection are repeated with theNp vectors in the g + 1st generation. This
process is iterated until a termination criterion is satisfied.

5. System model

The power system considered in this paper is the two-area four-machine power
system as shown in Figure 2 [1]. Each machine is represented by the detailed six-
order differential equations. The machines are equipped with simple exciter systems
of first-order differential equations as given in the Appendix [11]. The system con-
sists of two similar areas connected by a tie-line. Each area consists of two coupled
conventional generator units, each generator is rated 900 MVA and 20 kV. The
generator parameters can be found in [1, 11]. The dynamics of the system are
described by a set of nonlinear differential equations. However, for the purpose of
controller design, these equations are linearized around the nominal operating condi-
tions. The linearized equation of the system is given by:

x ¼ Aoxþ Bou

y ¼ CoxþDou
(12)

Figure 2.
Two-area system model.
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where, x is the state variable, y is the system output, and u is the control input. A0,
Bo, Co, and Do are constant matrices of appropriate dimensions.

Several operating conditions have been considered during the design stage of the
controller. However, only three operating conditions are listed in Table 1 for simplic-
ity. Case 1 is the nominal operating condition. At the nominal operating condition,
approximately 146 MW is transferred from area 1 to area 2 via the two tie lines, with
each line carrying half of the total power. Under these conditions, the load on bus 4
was 1137 MW, while the load on bus 14 was 1367 MW. Case 2 is the moderate load
condition, where about 409 MW of real power is transferred from area 1 to area 2. For
this case, the load on bus 4 was 967 MW, while the load on bus 14 was 1767 MW. case
3 is the heavy load condition (worst case scenario) where approximately 512 MW of
power is transferred from area 1 to area 2. For this case, the load on bus 4 was
876 MW, while the load on bus 14 was 1876 MW. It should be mentioned that the
system exhibits inter-area oscillatory modes due to the flow of power between the two
areas that causes the two areas to oscillate against each other. In addition, two local
area modes were also observed, one in each area. However, in this chapter, we will
concentrate only on the inter-area modes since they are the most critical and difficult
to control. Table 2 shows the open-loop eigenvalues of the inter-area modes. It can be
seen that without PSSs, the inter-area modes were stable but poorly damped for case
1, with a damping ratio of 0.011. However, the system became unstable for case 2 and
the instability became more pronounced for case 3 with damping ratios of �0.0057
and � 0.0130, respectively. This suggests that with the increase in active power
transfer between the two areas, the oscillations have now increased making the system
unstable. The frequency of oscillations of the inter-area modes ranges from 0.588 Hz
to 0.634 Hz.

Therefore, a supplementary controller known as a power system stabilizer (PSS)
will be required to damp the system’s oscillations. The block diagram of the PSS is
shown in Figure A.1 in the Appendix.

6. Objective function

The objective is to optimize the parameters of the PSSs simultaneously such that
the controllers can stabilize the system over a wide range of operating conditions. The
parameters that were to be optimized are K (gain of the PSS) as well as the lead-lag
time constants T1, T2, T3, and T4. The objective function used was to maximize the
lowest damped ratio over a wide range of operating conditions. This objective func-
tion was used for GA, BGA, PBIL, and DE. The objective function is given as:

Case Active power transfer

from area 1 to area 2

[MW]

Number of tie-line

between areas 1 and 2

Load’s active

power at bus 4

[MW]

Load’s active

power at bus 14

[MW]

1 146 2 1137 1367

2 409 2 967 1767

3 512 2 876 1876

Table 1.
Selected operating conditions.
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val ¼ max min ςij

� �� �

(13)

where
i = 1,2, … n, j = 1, 2, … .m

ςij ¼
�σij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
ij þ ω

2
ij

q (14)

where ζij ¼ �σi
ffiffiffiffiffiffiffiffiffiffi

σ2
i
þω2

i

p j is the damping ratio of the ith eigenvalue of the jth operating

conditions. The number of the eigenvalues is n, and m is the number of operating
conditions. σij and ωij are the real part and the imaginary part (frequency) of the
eigenvalue, respectively.

7. Design of the PSSs

In total 10 PSSs parameters were optimized (i.e., 5 parameters for each area) for
generators 1–4. The parameters that were optimized are K, T1, T2, T3, and T4. The
washout time constant (Tw) was set at 10 seconds and was not optimized since Tw is
not critical to the design. The following parameter domain constraints were consid-
ered when designing the PSSs.

0<K≤ 20

0:001 Ti ≤ 5

where K and Ti (i = 1, 2, 3, 4) denote the controller gain and the lead–lag time
constants, respectively.

For comparison purposes, a CPSS was also designed using the phase compensation
technique. Details can be found in [1, 2].

7.1 Parameters of GAs, BGA, PBIL, and DE

The parameters used in the optimization for GAs, BGA, PBIL, and DE are shown in
Table 3.

An observation of the parameters given below inTable 3 shows that PBIL uses few
parameters. There is no crossover or selection in PBIL compared to BGA, GA, and DE. In
addition, 500 generations were used in the PBIL optimization to allow for adequate
learning to take placewithin the optimization. This is because PBIL thatworks by learning
from the previous best and trying to find the very best individual takes time to explore the

Case Inter-area mode Damping ratio (%) Frequency of oscillations (Hz)

1 �0.044 � j3.98 1.10 0.634

2 0.022 � j3.78 �0.57 0.602

3 0.048 � j3.69 �1.30 0.588

Table 2.
Open-loop eigenvalues of the inter-area modes for selected operating conditions.
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search space. Another difference is theway inwhich the initial population is generated. In
GA, BGA, andDE, the initial population is selected randomly,while in PBIL the role of the
population is redefined using probability vectors (PV). It should bementioned that a
population size of 50was also tested in PBIL and it was found that it yielded similar results
to the population size of 100. However, in this work a population of 100was used.

7.2 Conventional PSS

The parameters of the conventional PSS (CPSS) were tuned at the nominal oper-
ating condition using the phase compensation method and trial and error approach.
Details of this approach can be found in [1–3].

8. Simulation results

8.1 Fitness values

Figures 3–6 show the fitness value (minimum damping ratio) of the system when
GA, BGA, PBIL, and DE are used in the optimization. The final value obtained from
the GA optimization is 0.1867 as compared to 0.205, 0.2095, and 0.227 for BGA, PBIL,
and DE, respectively. As discussed previously, GA and BGA were run for 120 gener-
ations, DE for 180 generations, while the PBIL was run for 500 generations. Since a
smaller population was used for DE, it was decided to increase its generations. The
reason for using 500 generations in PBIL is that it starts to settle only around 300
generations and therefore there is a need for a longer simulation period.

8.2 Eigenvalue analysis

Table 4 shows the inter-area modes for the system with the PSSs. It can be seen
that with the PSSs, the inter-area modes are very well damped as compared to the
open-loop system in Table 2. CPSS performs adequately for the nominal operating
condition. The damping ratios provided by the CPSS under the three cases 1, 2, and 3,
are 0.1666, 0.1442, and 0.1339, respectively. BGA-PSS provides a damping ratio of
0.2321, 0.2393, and 0.2412 for cases 1, 2, and 3, respectively. On the other hand, the

Parameters GA BGA PBIL DE

Population 100 100 100 50

Generation 120 120 500 180

Selection Normal

geometric

Truncation selection — Greedy

Crossover/

Recombination

Arithmetic Line and volume — Binomial

(CR: 0.95)

Mutation Nonuniform Adaptive random (initial

Rnom: 0.01)

Forgetting Factor

(FF:0.005)

DE/rand/2

(F: 0.95)

Learning rate (LR) — — 0.1 —

Table 3.
Parameters used in GA, BGA, PBIL, and DE.
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PBIL-PSS and DE-PSS provide a damping ratio of 0.2341 and 0.2377, respectively, for
case 1; 0.2387 and 0.2321, respectively, for case 2; 0.2385 and 0.23, respectively, for
case 3.

It is observed that PBIL-PSS, DE-PSS, and BGA-PSS provide similar damping
ratios to the system for operating condition considered. In case 1, DE provides the best
damping ratio, whereas BGA provides the best damping ratios for cases 2 and 3.
Among the evolutionary algorithm-based PSSs, GA-PSS provides the lowest damping
ratios of 0.2029, 0.2013, and 0.1993 for cases 1, 2, and 3, respectively.

Figure 7 shows the spread of the eigenvalues for the system equipped with the
different PSSs. CPSS is the lowest compared to the damping provided by all the other
EA-based PSSs. It is observed that among the EA-based PSSs, GA-PSS provides the
least damping. The damping provided by the PBIL-PSS, BGA-PSS, and DE-PSS is very
similar and higher than that provided by GA-PSS.

Figure 3.
Fitness value curve from the GA optimization.

Figure 4.
Fitness value curve from the BGA optimization.
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8.3 Small disturbance

To investigate the performance of the PSSs under small disturbance, a small dis-
turbance of 5% step response is applied to the reference voltage of generator 2 in area
1. The responses of the active power output of generators 2 and 3 are are shown in

Figure 5.
Fitness value curve from the PBIL optimization.

Figure 6.
Fitness value curve from DE optimization.

Case CPSS GA-PSS BGA-PSS PBIL-PSS DE-PSS

1 �0.62 � j3.67

(0.1666)

�0.80 � j3.86

(0.2029)

�0.89 � j3.73

(0.2321)

�0.91 � j3.78

(0.2341)

�0.94 � j3.84

(0.2377)

2 �0.50 � j3.43

(0.1442)

�0.75 � j3.65

(0.2013)

�0. 86 � j3.49

(0.2393)

�0.87 � j3.54

(0.2387)

�0.89 � j3.73

(0.2321)

3 �0.45 � j3.33

(0.1339)

�0.72 � j3.54

(0.1993)

�0. 84 � j3.38

(0.2412)

�0.84 � j3.42

(0.2385)

�0.87 � j3.68

(0.2300)

Table 4.
Inter-area modes and the respective damping ratios in brackets.
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Figures 8–13 for cases 1, 2, and 3, respectively. It can be seen that the system is well-
damped across all three operating conditions when it is equipped with DE-PSS, BGA-
PSS, GA-PSS, and PBIL-PSS. The CPSS is seen to give the worst performance.

Figures 8 and 9 show the active power output responses of generators 2 and 3,
respectively, for case 1. The system equipped with GA-PSS, BGA-PSS, DE-PSS, and

Figure 7.
Spread of the eigenvalues for the different PSSs-nominal condition.

Figure 8.
Response of G2 under the 5% step change in Vref of G2 – Case 1.
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PBIL-PSS has a similar settling time of approximately 4 sec., whereas the system
equipped with CPSS has a longer settling time of around 6 sec. DE-PSS is seen to give
the best performance in terms of undershoot and the amplitude of subsequent swings,

Figure 9.
Response of G3 under the 5% step change in Vref of G2 – Case 1.

Figure 10.
Response of G2 under the 5% step change in Vref of G2 – Case 2.
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albeit with a relatively large 1st swing overshoot as seen in Figure 8. It is observed that
DE-PSS gives a large 1st swing overshoot in Figure 8. The relatively large 1st swing
overshoot can be attributed to the high gain of the controller. Note that DE-PSS’s gain
has almost reached the allowable maximum value [20]. The performance of BGA-PSS
is comparable to that of PBIL-PSS. Compared with other EA-based PSS, GA-PSS gives
the worst performance. However, it performed better than the CPSS. In Figure 9,
BGA-PSS is seen to give a slightly high 1st swing overshoot but the subsequent swings
are well-damped. Overall, CPSS is seen to give the worst performance.

Figures 10 and 11 show the active power responses of generators 2 and 3, respec-
tively, for case 2. It can be seen that the CPSS has a longer settling time of around
7 sec. Compared to a settling time of around 4 sec. for the EA-based PSSs. This
suggests that the oscillations have increased in case 2 compared to case 1. The EA-
based PSSs are able to damp the oscillations adequately when compared to the CPSS.
In terms of undershoot and subsequent swings, DE-PSS is seen to give the best
responses albeit with a relatively large 1st swing overshoot as seen in Figure 10. The
performances of BGA-PSS and PBIL-PSS are similar. Overall, CPSS gives the worst
performance followed by GA-PSS.

Figures 12 and 13 show the active power responses of generators 2 and 3, respec-
tively, for case 3. It can be seen that the system response is similar to case 2 except that
the oscillations have now increased as can be seen in the system’s responses. The
system equipped with the CPSS settled around 10 sec. (see Figure 13). It can be seen
that the performance of the CPSS has now deteriorated significantly. On the other
hand, the performances of GA-PSS, BGA-PSS, PBIL-PSS, and DE-PSS have deterio-
rated only slightly. This means that the EA-based PSSs are more robust. In terms of
settling time, the EA-based PSSs have similar settling times of approximately 6.5 sec.,
which is comparable to case 2. Although DE-PSS has a larger 1st swing overshoot as
seen in Figure 12, it gave the best responses in terms of undershoot and subsequent
swing amplitudes, followed by BGA-PSS and PBIL-PSS. The performance of GA-PSS
although better than that of CPSS is not as good as the other EA-based PSS.

Figure 11.
Response of G3 under the 5% step change in Vref of G2 – Case 2.
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8.4 Large disturbance

A large disturbance was considered by applying a three-phase fault to the system at
bus 3. The fault was cleared by removing one of the transmission lines between bus 3
and bus 13. The fault was applied for 0.1 seconds. After the fault was cleared, the faulted
line was removed and the system settled to a different operating condition with only
one tie line transmitting power from area 1 to area 2. This means the system is weaker
after the fault was cleared compared to its state before the fault. Figures 14 and 15 show

Figure 12.
Response of G2 under the 5% step change in Vref of G2 – Case 3.

Figure 13.
Response of G3 under the 5% step change in Vref of G2 – Case 3.
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the electric power output for generator 3 for case 1 and case 2, respectively. The
responses for case 3 are not shown because the system was unable to survive this large
disturbance after the fault was removed. It can be seen from Figure 14 (case 1) that the
output power of generator 3 has a high overshoot in the first swing after the fault was
cleared but settled down quickly after a few seconds, with all the PSSs providing
adequate damping to stabilize the system. However, when the power that was trans-
ferred from area 1 to area 2 increased,the CPSS was unable to maintain the stability of
the system as seen in Figure 15 (case 2). On the other hand, all the EA-based PSSs were
able to stabilize the system, which suggests that they are more robust than the CPSS.

Figure 14.
Electric power output of generator 3 following a three-phase fault on bus 3 for case 1.

Figure 15.
Electric power output of generator 3 following a three-phase fault on bus 3 for case 2.
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9. Conclusions

An optimal PSS design for small signal stability improvement of a multi-machine
power system using four evolutionary algorithms (GA, BGA, PBIL, and DE) has been
presented. Frequency-domain and time-domain simulations have been presented to
show the effectiveness of the EA-based PSSs in damping low-frequency oscillations. It
is shown that in the frequency domain, the performances of BGA-PSS, PBIL-PSS, and
DE-PSS are comparable and better than that of the GA-PSS for all cases investigated.
However, time-domain simulations show that DE-PSS performs better than BGA-PSS
and PBIL-PSS in terms of undershoot and subsequent swings albeit with a relatively
large 1st swing overshoot. This overshoot could be attributed to the high gain of the
controller. One way to deal with this overshoot is to reduce the gain of the controller;
however, this could also affect the damping. GA-PSS is shown to give the worst
performance among the EA-based PSSs, but it performed better than the CPSS. In
designing the PBIL-PSS, more generations were required compared to GA-PSS, BGA-
PSS, and DE-PSS. Since PBIL works by learning from the previous best individual, it
takes time for the algorithm to explore the search space. Compared to the EA-based
PSS, the CPSS that was designed using the conventional method has been shown to
perform poorly and is not robust. Further research will be done in the direction of
improving the EAs algorithms by self-adapting the genetic parameters and using
multi-objective functions in the optimization.
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Appendix

Generator and automatic voltage regulator (AVR) equations

d

dt
Efd ¼

KA

TA
Vref � V t

� �

�
Efd

TA

where KA and TA are the gain and time constant of the AVR. Vt is the terminal
voltage of the generator. In this work, KA = 200 and TA = 0.05 sec.

PSS block diagram

where K is the gain of the PSS, T1 to T4 are lead/lag time constants, and Tw is the
washout time constant. T1 and T2 form the first lead/lag block, while T3 and T4 form
the second lead/lag block of the PSS.
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PSS block diagram.
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