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Abstract

Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of
various tissue abnormalities, detection of tumors. The active development in the com-
puterized medical image segmentation has played a vital role in scientific research. This
helps the doctors to take necessary treatment in an easy manner with fast decision
making. Brain tumor segmentation is a hot point in the research field of Information
technology with biomedical engineering. The brain tumor segmentation is motivated by
assessing tumor growth, treatment responses, computer-based surgery, treatment of
radiation therapy, and developing tumor growth models. Therefore, computer-aided
diagnostic system is meaningful in medical treatments to reducing the workload of
doctors and giving the accurate results. This chapter explains the causes, awareness of
brain tumor segmentation and its classification, MRI scanning process and its operation,
brain tumor classifications, and different segmentation methodologies.

Keywords: magnetic resonance imaging, segmentation, classification, tumor,
diagnostic system

1. Basics of medical research

Digital image processing is a multidisciplinary area used in medical sciences, microscopy,

astronomy, computer vision, geology, and many other fields. Medical imaging is one of the

most important aspects of scientific and medical research. It provides computerized medical-

image segmentation and computer-aided design. Particularly, these enhancements in medical

imaging lead to the improved planning and accuracy of surgical procedures using human-

machine intervention. This brings the therapeutic plan and the development of imaging

instruments to provide some of the most effective diagnostic tools in the medical field.

Recently, many medical instruments have been developed to produce sectional views of the

human anatomy. The two major non-invasive techniques used for imaging the human body
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are computed tomography (CT) and magnetic resonance imaging (MRI). The MRI is used as a

medical diagnostic tool for studying the human anatomy and is based on the principles of

nuclear magnetic resonance (NMR), to provide information about the properties of materials.

The NMR was developed by Bloch and Purcell in the 1940s [1, 2]. In the year 1970, Paul

Lautenberg, Ray Damadian, and Peter Mansfield began to use the principles of NMR in MRI

as an imaging modality for the head, spine, and body. MRI produces images of high spatial

resolution with good soft tissue contrast that has made it useful for the detection of diseases. In

x, Paul Lauterbur and Peter Mansfield were awarded the Nobel Prize in Physiology or Medi-

cine for their simultaneous pioneering research applying MRI to the human body [3].

1.1. Motivation for brain tumor segmentation

Brain tumor segmentation is one of the most important and difficult tasks in many medical-

image applications because it usually involves a huge amount of data. Artifacts due to

patient’s motion, limited acquisition time, and soft tissue boundaries are usually not well

defined. There are large class of tumor types which have variety of shapes and sizes. They

may appear indifferent sizes and types with different image intensities. Some of themmay also

affect the surrounding structures that change the image intensities around the tumor.

Moreover, the World Health Organization (WHO) states that around 400,000 people in the

world are affected with the brain tumor and 120,000 people have died in the previous year

[4–7]. Before the treatment of chemotherapy, radiotherapy, or brain surgeries, there is a need

for medical practitioners to confirm the boundaries and regions of the brain tumor and

determine where exactly it is located and the exact affected area. For reviewing the adverse

effects of the cancer, the tool can be automatic or semi-automatic for brain tumor segmentation

can helps and also acts as a pre-requisite stage for doctors to identify the brain tumor before

performing surgeries.

1.2. Magnetic resonance imaging (MRI)

The MRI is a diagnostic tool used for analyzing and studying the human anatomy. Huang [8],

Zhan et al. [9], and Yang et al. [10] explained the medical images acquired in various bands of

the electromagnetic spectrum. The wide variety of sensors used for the acquisition of images

and the physics behind them, make each modality suitable for a specific purpose.

In MRI, the pictures are produced using a magnetic field, which is approximately 10,000 times

stronger than the earth’s magnetic field (Armstrong [11], Stark [6], and Steen [7]). The MRI

produces more detailed images than other techniques, such as CT or ultrasound. The MRI also

provides maps of anatomical structures with a high soft-tissue contrast. Basically, the magnetic

resonance of hydrogen (1H) nuclei in water and lipid is measured by an MRI scanner. As the

signal values are 12-bit coded, 4096 shades can be represented by a pixel [11]. The MRI

scanners require a magnetic field and it is available at 1.5 or 3 T. In comparison with the earth’s

magnetic field (~50 μT) the magnetic field of a 3 T MRI scanner is approximately 60,000 times

the earth field. The patient is placed in a strong magnetic field, which causes the protons in the

water molecules of the body to align either in a parallel or anti-parallel orientation with the

magnetic field. A radiofrequency pulse is introduced, causing the spinning protons to move
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out of the alignment. When the pulse is stopped, the protons realign and emit radio frequency

energy signal that is localized by the magnetic fields and are spatially varied and rapidly

turned on and off. A radio antenna within the scanner detects the signal and creates the image.

Terms used in MRI are shown in Table 1.

MR-based imaging techniques are used to characterize the brain tumor according to their

anatomy and physiology. Clinicians, particularly are interested in determining tumor location,

extent, amount of necrosis, vascular supply, and associated edema. There are different imaging

techniques that are useful in providing a relevant differential diagnosis. The various techniques

used today for imaging brain tumor are contrast agents, fat suppression, MR angiography,

functional MRI, diffusion weighted imaging (DWI), MR spectroscopy, and fast fluid-attenuated

inversion-recovery (FLAIR). Different methods of imaging are applied in the clinical environ-

ment according to tumor type and diagnostic requirements. The methods used in the diagnosis

work are described in detail [8, 12].

The contrast agents technique delivers an excellent soft-tissue contrast. Sometimes there is a

need to administer exogenous contrast usually an intravenous injection of some paramagnetic

agent, most commonly Gd-DTPA. The effect of this agent is to shorten the relaxation time of

local spins causing a decrease in signal on T2-weighted images and an increase on T1-

weighted images. The MRI brain image before and after contrast enhancement is shown in

Figure 1.

The increased vascularity of tumors produces a preferential uptake of contrast agent and it can

be used to better observe the tumors from the surrounding normal tissue. If MRI scans are

repeatedly acquired following the contrast injection, the dynamic nature of contrast uptake can

be examined, which may improve the differentiation of benign and malignant disease.

MR angiography is one of the biggest growth areas of MRI. In normal circumstances, the flow

effects can cause unwanted artifacts. But, in MRA these phenomena are used advantageously

to permit the non-invasive imaging of the vascular tree. Techniques can be generally divided

into “white” or “black” blood methods depending on whether moving spins appear brighter

Term Description

T1 The time needed for the protons in the tissue to return to their original state of magnetization

T2 The time required for the protons perturbed into coherent oscillation by the radiofrequency

pulse to loosen this coherence

TR Repetition time: the time between successive applications of radiofrequency pulse sequences

TE Echo time: the delay before the radiofrequency energy radiated by the tissue in question is

measured

T1-weighted image Short TR, short TE. Provides better anatomic detail

T2-weighted image Long TR, short TE. More sensitive to water content and as a result, more sensitive to pathology

FLAIR image Long TR, short TE. Improved contrast between lesions and cerebrospinal fluid

Table 1. Summaries of terms used in MRI.
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or darker than the stationary tissue. In high-velocity signal loss, the blood that has moved in-

between 90 and 180� pulses will not produce a signal and will appear dark. If a short TR is

used, the spins in the imaging slice become quickly saturated and “fresh” spins flowing into

this slice have their full magnetization available to emit a high signal. This technique works the

best way over thin sections when blood flow is perpendicular to the imaging plane. Although

current clinical agents are extracellular, they quickly distribute into the extra vascular space

and the accurate timing of imaging sequence following the contrast injection can provide

excellent results. Good timing of arterial bolus with the center of k-space acquisition is crucial

to avoid artifacts. This can be achieved by using a small “test bolus” or by monitoring the

contrast flow using rapid 2D images before initiating the real imaging sequence. The angiog-

raphy provided by MRI imaging is shown in Figure 2.

Functional MRI is a technique for examining the brain activation, which unlike PET, is non-

invasive with relatively high spatial resolution. The most common method utilizes a technique

called blood oxygen level dependent contrast. This is an example of endogenous contrast,

making use of the inherent signal differences in blood oxygenation content. In the normal

resting state, a high concentration of deoxyhemoglobin attenuates the MRI signal due to its

paramagnetic nature. However, the neuronal activity, in response to some task or stimulus,

creates a local demand for the oxygen supply, which increases the fraction of oxy hemoglobin

causing a signal increase on T2 or T2*-weighted images. In a typical experiment, the patient is

subjected to a series of rest and task intervals, during which MRI images are repeatedly

acquired. The signal changes during the course of time are then examined on a pixel-by-pixel

basis to test how well they correlate with the known stimulus pattern. The pixels that demon-

strate a statistically significant correlation are highlighted in color and overlaid onto a gray-

scale MRI image to create an activation map of the brain. The location and extent of activation

is linked to the type of stimulus. Thus, a simple thumb-finger movement task will produce

activation in the primary motor cortex. The functional study and activation map of MRI is

shown in Figure 3.

Diffusion-weighted imaging is an MRI technique, in which contrast within the image is based

on the movement of the water molecules. The diffusion refers to the random motion of the

molecules along a concentration gradient. The diffusion-weighted MRI is another example of

(a) (b)

Figure 1. MRI image contrast enhancement. (a) Before (b) after.
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endogenous contrast, using the motion of spins to produce signal changes. The most common

method employs the Stejskal-Tanner bipolar gradient scheme. The gradients with equal ampli-

tude, but opposite polarity, are applied over a given interval. The stationary tissue is dephased

and rephased equally, whereas the spins which have moved during the interval suffer a net

dephasing and signal loss. By using gradients of sufficiently high amplitude, the sequence is

made sensitive to the motion at the microscopic level. The signal attenuation depends on the

degree of diffusion, the strength, and the timing of the gradients. By acquiring the images with

different values of b factor, a value for the apparent diffusion coefficient can be calculated. The

Figure 2. MRI angiography (Courtesy: Siemens.com).

(a)        (b)

Figure 3. Functional study of MRI. (a) MRI image (b) activation map of the MRI image.
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experiment is performed using diffusion gradients in any direction. However, to obtain a

complete three-dimensional description of the diffusion, a tensor is calculated based on a new

gradient image and combinations of gradient pairs. This is able to discern anisotropy due to

preferential diffusion along the structures or fibers. The white matter tracts in a normal MRI

brain image are shown in Figure 4.

MRI spectroscopy is a technique for displaying the metabolic information from an image. It

relies on the inherent differences in the resonant frequency. The MRI signal is measured and a

spectrum is displayed. By using a standard reference, the chemical species of each peak are

determined. For proton MRI signal, the reference compound is tetramethylsilane. All the

chemical shifts are expressed as the frequency differences from this compound giving a field-

independent part per million scales. In this standard, the water has characteristic peak value of

4.7 ppm. Most methods use the intersection of three slice-select RF pulses to excite a volume of

interest called a voxel.

The multiple voxels can be acquired by using phase encoding in each of the desired dimen-

sions. This technique, called chemical shift imaging, is useful in isolating individual peaks and

displaying the integrated area as a color scale to produce a metabolic map. The spectrum when

acquired from a normal healthy brain tissue displays the characteristic peak signal defined as

NAA; it provides images with excellent soft-tissue contrast. If a spectrum is taken from a

slightly enlarged, but otherwise normal looking, part of the medulla, it does not show any

enhancement with gadolinium. In this case, the NAA (N-acetyl-aspartate) peak is absent indi-

cating the loss of viable tissue, and the choline peak is elevated indicating the high cell

proliferation in tumors. The single voxel proton MRI of brain in normal and malignant tissue

is shown in Figure 5.

The MRI images are dependent upon the absorption of radio waves by the hydrogen nuclei,

1H which has an intrinsic nuclear spin in sufficient quantities to enable the production of a

useful image of the human body. Many of the protons within the human body are found in the

nuclei of water. The generation of MRI images is a result of the sophisticated interaction

Figure 4. White matter tracks in a normal MRI brain image.
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between the electronic components, radiofrequency generators, coils, and gradient that inter-

face with a computer for communication between the different electronics. The magnet, gradi-

ent coils, and RF coils present in the MRI scanner are the basic parts that help to form an image.

The schematic diagram of MRI scanner and the basic parts of the MRI scanner are shown in

Figure 6 [9, 13].

The magnet is used to form the “external”magnetic field in which the patient or object is placed.

Three types of magnets can be used in MR imaging: permanent, resistive, and superconducting.

The superconducting magnets are the most commonly used in the recent MRI scanners. The

superconducting magnets with field strength 1.5–3.0 T range offer good image contrast due to

the energy exchange between the protons and their environments.

The hydrogen proton is the primary nucleus used for MRI because it produces the strongest

signal. Proton in the absence of an external magnetic field may be oriented along any direction.

In the absence of an external magnetic field, the net magnetization vector will be zero. When

placed in a strong external magnetic field the magnetic moments of the proton orient them-

selves along the magnetic flux lines. The magnetic moments of the protons align along the

direction of actual magnetic field B0. The equilibrium value of the magnitude of proton

magnetization M0 in the presence of magnetic field is given in Eq (1).

M0 ¼
Nγ2h2I Iþ 1ð ÞB0

3kTs
(1)

where B0 is the static magnetic field, N is the number of proton spins per unit volume, γ is the

gyro magnetic ratio, a constant unique for each nucleus, h is the Planck’s constant, I is the proton

spin, Ts is the absolute sample temperature in Kelvin, and k is the Boltzmann’s constant.

Thus, the magnetization M0 is proportional to the external magnetic field B0. The magnetic

moments exhibit the property of processing around the field B0. The Larmor frequency in MRI

refers to the rate of precession of spin under the influence of magnetic moment of the proton

around the external magnetic field. The precession of Larmor frequency fLis given in Eq (2).

(a)                                                                            (b) 

Figure 5. Single voxel proton MRI brain in normal and malignant tissue. (a) Normal (b) With tumour.
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fL ¼

γB0

2π
(2)

For the proton, γ

2π is equal to 42.58 MHz/Tesla. The Larmor frequency will be in the radio

frequency region (40–50 MHz).

To obtain an MRI signal, the radio frequency (RF) pulses are applied at the Larmor frequency

fL perpendicular to the main magnetic field B0 disturbing the magnetic moments of the protons

 

(a)
  

 

(b)   

Figure 6. View of MRI scanner and the basic parts of MRI scanner. (a) The schematic diagram of MRI scanner (b) basic

parts of the MRI scanner.
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from their equilibrium position. The protons are aligned along the static magnetic field. This

alignment is disturbed by a 90� RF pulse and the total displacement is proportional to the RF-

pulse energy and also the Larmor frequency. If the energy of the RF pulse is sufficient to tip the

magnetization vector (M) by 90�, then it is tipped into the transverse plane. The magnetization

vector continues to spinning process about B0 in the transverse plane. The time-varying

magnetization induces flux changes, which are detected in the RF coil. The relaxation con-

stants are the important parameters of MRI. The MRI slice data are generated using an X-ray

source that rotates around the object. The earliest sensors were scintillation detectors, with

photo multiplier tubes excited by cesium iodide crystals. Cesium iodide was replaced during

the 1980s by ion chambers containing high pressure xenon gas [14]. These systems were, in

turn, replaced by scintillation systems based on the photo diodes, instead of photo multipliers.

Many data scans are progressively taken, as the object is gradually passed through the gantry.

The typical MRI system with the schematic diagram of MRI equipment mainly consists of five

parts: the main magnet, gradient systems, RF system, computer systems, and other auxiliary

equipment as shown in Figure 7.

The direction selection for MRI slices and MRI scan protocol [15, 16] for brain tumor patients

are shown in Figure 8 and Table 2.

In the MRI scanner, a section of the slice perpendicular to the z-axis is called axial plane. The

plane that divides the brain into left and right parts is known as sagittal or median plane. The

vertical plane that divides the brain into posterior and anterior parts is known as coronal or

frontal plane. The MRI brain image in different planes is shown in the Figure 9.

MRI pixel representation mainly in order to increase the contrast between pathology and

healthy tissue, enhancement agents such as gadolinium (Gd) may be used (Kim et al. 2013).

The Gd has a large magnetic moment, which triggers fluctuations in the local magnetic field

near the Larmor frequency. The MRI images are grids of pixels with 512 rows and 512

Figure 7. The schematic diagram of MRI equipment and MRI scan process.
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Sagittal, axial, coronal 

Figure 8. The direction selection in MRI slices.

Anatomical plane Weighting Contrast Slice thickness/spacing between

slices (in mm)

Sagittal T1-Weighted — 5/6

Axial T1-Weighted — 4/4

Axial T2-weighted — 5/6

Axial T2-weightedFLAIR — 5/6

Axial T1-Weighted Gadolinium 4/4

coronal T1-Weighted Gadolinium 4/4

Sagittal T1-Weighted Gadolinium 5/6

Table 2. MRI scan protocol for brain tumor patients [15].

(a)                      (b) (c) 

Figure 9. MRI brain image in different planes. (a) Axial (b) Coronal (c) Sagittal.
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columns. Every pixel of an MRI image corresponds to a voxel, a volume element, whose value

represents the tissue and MRI signal. The volume of a voxel depends on the MRI scan

parameters like slice thickness and pixel spacing. The MRI images are usually delivered in

DICOM format. Besides the brain image, the DICOM-files contain information about the scan

and the patient. Normally, an MRI scan acquires more than one slice, which leads to an image

sequence with 5.5 mm spacing between the slices [17]. The sequence of MRI for 256 slices is

shown in Figure 10 with 5.5 mm spacing between the slices.

In this thesis, the segmentation algorithm is applied to the MRI brain images with tumors. In

order to understand the clinically important characteristics of the tumor tissues, the anatomy

of brain is considered in the next section.

1.3. Anatomy of the brain classification of brain tumor

World Health Organization (WHO) classifies the brain tumors as: astrocytoma, low grade

astrocytoma (grades I and II), high grade astrocytoma (grades III and IV), ganglioglioma,

oligodendroglioma, ependymoma, and medulloblastoma.

The higher the grade, the more malignant is the tumor. The tumor grading helps the doctor,

patient, and caregivers/family members to understand the patient’s condition [18]. It also helps

the doctor to plan treatment and predict outcome.

Figure 10. MRI sequence with 5.5 mm spacing between slices.
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Grade-I is indicative of the least malignant tumors and is usually associated with long-term

survival. These tumors grow slowly and have an almost normal appearance when viewed

through a microscope. Only surgery may be required as an effective treatment for this grade

tumor [19]. Pilocytic astrocytoma, craniopharyngioma, and other tumors of neurons such as

gangliocytoma and ganglioglioma are the examples of grade I tumors.

Grade II tumors are slow-growing and look slightly abnormal under a microscope. Some can

spread into nearby normal tissue and recur sometimes as a higher grade tumor.

Grade III tumors are, by definition, malignant although there is not always a big difference

between grade II and grade III tumors. The cells of a grade III tumor are actively reproducing

abnormal cells, which grow into nearby normal brain tissue. These tumors tend to recur often

as a grade IV.

Grade IV are the most malignant tumors. They can have a bizarre appearance when viewed

under the microscope, and easily grow into nearby normal brain tissue. These tumors form

new blood vessels so that they can maintain their rapid growth. They also have areas of dead

cells in their centers. The glioblastoma multiform is the most common example of a grade IV

tumor. A sample of astrocytoma is (cite [20]) shown in Figure 11.

There are three classifications of tumors based on their location: local tumors, regional tumors,

and distant tumors. The local tumors are confined to one hemisphere in one part of the brain,

meninges, and ventricular system. The regional tumor crosses the midline or tentorium and

invades bone, blood vessel, nerves, and spinal cord [16]. The distant tumors extend to the nasal

cavity, nasal pharynx, and posterior pharynx.

Classification of tumors based on their radiological appearance includes non-enhanced

tumors, full-enhanced tumors without edema, full-enhanced tumors with edema, and ring-

enhanced tumors. Classification of tumors based on their alter-At ions consists of small

deforming tumors (SD) and large deforming tumors (LD).

Brain tumor is diagnosed when a brain tumor is suspected; a doctor can carry out a number of

tests to reach a diagnosis. These tests will help the doctor to determine the kind of tumor in the

brain.

(a)                                                 (b)                           (c) 

Figure 11. Sample of astrocytoma. (a)Astrocytoma IV (b) Astrocytoma II (c)Astrocytoma III.
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Some of the tests are performed first to diagnose the tumor and the results are used later to

monitor the progress to determine whether the tumor has disappeared, is shrinking, remaining

the same, or has changed in some way. Like many other medical conditions, the follow-up care

for a brain tumor might go on for years.

The brain tumor diagnosis [16] is executed based on the Neurological Exam, Types of brain scans,

X-rays, Laboratory test, DNA profiling, Biopsy procedure, and Tumor grading and staging.

A neurological exam includes a series of tests and procedures used to assess a person’s nerves,

senses, muscle strength, reflexes, balance, and mental state. The purpose of a neurological

exam is to help the doctor determine the cause of the symptoms that brought the patient into

the clinic in the first place.

MRI scans generate images of the brain for the purpose of diagnosing the tumor. The most

common scans for diagnosis and follow-up are: MRI, CT, FMRI, dynamic MRI, angiography

and MRI angiography MRS, positron emission tomography, single photon emission comput-

erized tomography, and magneto encephalography.

The genetic profiling, or DNA profiling, is a lab test used to determine the specific features of

patient DNA. It is a relatively new procedure that can give the doctor detailed information

about the tumor. This information is used to develop a more specialized course of treatment,

which may significantly increase the odds of success. A biopsy is a surgical procedure, in

which a small amount of tumor tissue is removed and sent to a lab for evaluation. The purpose

of a biopsy is to establish whether an image is cancerous or not. The biopsy can be performed

as part of the surgery to remove a tumor, or as a separate procedure. In either case, the surgeon

removes a small amount of tumor tissue and sends it to a lab for a pathologist to review. Three

types of biopsy are often performed in patients with brain tumors. These include needle

biopsy, stereotactic biopsy, and open biopsy. If the results of patient’s biopsy are not normal,

the patient goes back to the doctor for further tests and advice.

1.4. Brain tumor segmentation

A lot of research has been carried out in the area of segmentation. Various segmentation

techniques are addressed in this survey. The content of this survey comprises three important

contributions: fuzzy C-means (FCM), region growing (RG), and genetic-based methods. The

aim is to study and identify of the suitable segmentation for MRI images. This above said aim

is to grasp the characteristics of tumors in the patients, automatically segment the tumor, and

assist the doctors in assessing the effects of treatment with clinical pathology analysis and

improving the therapeutic treatment in the next pathological periods.

1.4.1. Image segmentation using fuzzy C-means (FCM) method

The fuzzy C-means method description and some of the recent researches for segmentation

based on genetic methodologies are as follows:

The FCM is the most widespread clustering algorithm [21, 22], but it is more sensitive to initial

cluster centers and easy to fall into the local minimum value, so that the global optimal
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solution cannot be obtain due to the local search hill-climbing method. The traditional FCM for

image segmentation directly performs the clustering for pixel sample sets with an obvious

disadvantage of computational complexity. So, it is very important to choose better initial

cluster centers. If we choose better initial cluster centers, algorithm can converge to the real

cluster centers quickly. The FCM algorithm is successfully applied in many real world prob-

lems such as astronomy, geology, medical imaging, target recognition, and image segmenta-

tion. FCM segmentation method has considerable benefits, because it could retain much more

information from the original image than hard segmentation method [23]. The FCM algorithm

is composed of the following steps:

1. Initialize

U ¼ uij
� �

matrix, U 0ð Þ (3)

2. At k-step: calculate the centers vectors c kð Þ ¼ cj
� �

with U kð Þ

cij ¼

P

N

i¼1

umij xj

P

N

i¼1

umij

(4)

3. Update U kð Þ, U kþ1ð Þ

Uij ¼
1

P

c

i¼1

kxi�cjk

kxi�ckk

� � 2
m�1

(5)

4. If kU kþ1ð Þ �U kð Þk < ∈ then STOP; otherwise return to step 2.

uij is between 0 and 1, ci denotes the centroids of cluster I, dij is the Euclidean distance between

ith centroid and jth data point, m Є [1, ∞] is a weighting function.

This iteration will stop when maxij ju
kþ1ð Þ
ij � u

kð Þ
ij j

n o

< ∈ where ∈ is a termination criterion

between 0 and 1, whereas k denotes the iteration steps. This procedure converges to a local

minimum or a saddle point of jm.

FCM algorithm is a minimization operation method of iterative optimization, which needs to

repeat the calculation of membership and update value of Uij and Vi. If image data n is quite

huge, it meets the problem of heavy calculation burden and problem to assign the initial

clusters. Therefore IFCM is proposed [24] as a new center initialization algorithm for measur-

ing the initial centers. The implementation of IFCM is presented in this chapter.

Caldairou et al. [25] described the membership function for calculating the centroids of clus-

ters. The membership function indicates the degree of the elements belonging to a specific

class. The same element can belong to various categories in different levels and the sum of the

corresponding values of all the membership functions is 1. The element that is determined
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belongs to a category which has the largest value of the membership function. This is the

classification criterion used in the FCM-based algorithms. But, the algorithm is still sensitive

to the initial cluster centers.

Hema Rajini et al. [24] proposed an enhanced k-means and improved kernelised FCM with

improved cluster center initialization algorithm to segment the MRI brain images. The method

selected the initial center used by the center initialization algorithm. This algorithm was based

on maximum measure of the distance function which was found for cluster center detection

process. The validity of clustering results was obtained using silhouette method and the results

were compared with those of original k-means and FCM algorithms. The addition of post-

processing technique to extract the tumor in MRI brain image could improve the detection of

brain tumor results.

Zou Kaiqil et al. [22] proposed an IFCM algorithm for color image segmentation. It was

proposed to solve the problem of heavy calculating burden and the disadvantage of clustering

performance affected by initial cluster centers for FCM. The quick subtractive clustering (QSC)

was used for getting initial cluster centers of the image data points. In order to reduce the

computational complexity, the mapping from pixel space to Eigen vector space was used for

modifying the object function. The algorithm was limited to only for the general image seg-

mentation process and further a post-processing improvement was needed for detecting tumor

in MRI images.

Yongmin Kim et al. [26] discussed a novel segmentation procedure. In this method, the segmen-

tation played a crucial role in numerous biomedical imaging applications, assisting clinicians or

medical professionals to diagnose various diseases using scientific data. It required high compu-

tational time which limited its applicability.

William Sandham et al. [27] proposed a FCM segmentation of MRI brain image using neigh-

borhood attraction with neural-network optimization. In this method, the updating process

combined the classified elements and the membership functions instead of the traditional

operations which rely on the data points. If the MRI image contains noise or is affected by the

presence of artifacts, it can change the pixel intensities leading to improper segmentation.

These problems must be properly addressed to improve the updating of membership value of

the FCM algorithm.

Maoguo Gong et al. [28] explained an FCM Clustering with local information and kernel metric

for image segmentation. An IFCM algorithm for image segmentation introduced a tradeoff

between weighted fuzzy factor and a kernel metric. The new algorithm adaptively determined

the kernel parameter by using a fast bandwidth selection rule based on the distance variance of

all the data points in the collection. The weighted fuzzy factor depended both on the distance of

all the neighboring pixels and their gray-level difference. By using this factor, the new algorithm

could accurately estimate the damping extent of the neighboring pixels.

Ref. [29] addressed the FCM algorithm for GBM brain tumor segmentation. They used T1-

weighed, T2-weighted, and Proton Density(PD)-weighted MRI with a vectorial FCM to seg-

ment the pathological brain into white matter, gray matter, cerebral fluid, tumor, and edema.

Although the FCM algorithm was simple, fast and unsupervised, it could not segment the

Advanced Brain Tumour Segmentation from MRI Images
http://dx.doi.org/10.5772/intechopen.71416

97



tumor and edema accurately because of the intensities of the overlapping tissues. The FCM

was very sensitive to noise and initialization values and it was validated and tested for limited

cases.

Zulaikha Beevi et al. [30] presented a robust and efficient approach for the segmentation of

noisy medical images. The proposed approach utilized the histogram-based FCM clustering

algorithm for the segmentation of MRI brain images and the cluster density was focused. The

heavy calculating burden was the drawback of this method.

In all the methods applied to the brain tumor segmentation, the partitioning of the data was

carried out through a membership function at each iterative process. In the iterative process,

the samples of the same groups were more similar to one another than the samples belonging

to different groups. The major drawback of the FCM is that it is sensitive to the initialization

problem due to noise, initial centers of clusters, and different sizes of tumor. The computa-

tional time is high for executing the segmentation process.

In all the above studies fuzzy C-means method and it steps for segmenting and detecting

tumor of the MRI brain images are discussed.

1.4.2. Image segmentation using region growing (RG) method

The region growing methodology and recent related work of region growing are described here.

RG is a simple image segmentation method based on the seeds of region [31]. It is also

classified as a pixel-based image segmentation method since it involves the selection of initial

seed points. This approach to segmentation examines the neighboring pixels of initial “seed

points” and determines whether the pixel neighbors should be added to the region or not

based on certain conditions. In a normal region growing technique, the neighbor pixels are

examined by using only the “intensity” constraint. A threshold level for intensity value is set

and those neighbor pixels that satisfy this threshold is selected for the region growing. The

processing steps are

• Select the initial seed point

• Append the neighboring pixels—intensity threshold

• Check threshold of the neighboring pixel

• Thresholds satisfy-selected for growing the region.

• Process is iterated to end of all regions.

Ref. [32] explained an automatic approach for segmenting the MRI images. The segmentation

problem was formulated as a problem in region growing. In particular, the method started

locally by searching for a seed region of the left atrium from an MRI slice. A global constraint

was imposed by applying a shape prior to the representation of left atrium by Zernike

moments. The planning and evaluation procedures of left atriumablation were commonly

based on the segmentation of the left atrium which was a challenging task due to large

anatomical variations.
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Yunliang Cai et al. [33] carried out detecting, grouping, and structure inference for invariant

repetitive patterns in the images. Repetitive patterns are products of repetitive structures,

repetitive reflections, or color patterns. The segmentation algorithm proposed in this paper

followed the classical region growing image segmentation scheme. It utilized a mean-shift-like

dynamic process to group the local image patches into clusters. It exploited a continuous joint

alignment to match similar patches and refined the subspace grouping. The result of higher

level grouping of image patterns could be used to infer the geometry of objects and estimate

the general layout of a crowded scene.

Shafaf Ibrahim et al. [31] presented a comparison of segmentation algorithm performances

between three techniques of seed-based region growing (SBRG), adaptive network-based

fuzzy inference system (ANFIS), and FCM paradigms. All the three methods were found to

be promising for segmentation of light abnormalities. Nevertheless, the segmentation perfor-

mances of dark abnormalities were observed to produce moderate significances of correlation

values in all conditions. These resulted in the segmentation of dark abnormalities becoming

not as good as the segmentation in light abnormalities.

Nigri Happ et al. [34] presented a region growing segmentation algorithm for parallel version

of graphics processing units. This method widely used by the geographic object-based image

analysis. Initially, all the image pixels were considered as seeds or primitive segments. The

fine-grained parallel threads assigned to the individual pixels merged the adjacent pixels

iteratively and ensured that the increase in heterogeneity was minimized. The accuracy of the

segmentation is low based on this approach.

Aman Chandra Kaushik et al. [35] proposed a content-based active contour method (CBAC)

using both intensity and texture information present within the active contour. It also used a

Gray-Level Co-occurrence Matrix (GLCM) to define texture space for tumor segmentation in

MATLAB. The region growing method was used for segmenting ROI and edge detection by

utilizing the boundary segmentation. The main drawback of this method was under segmen-

tation and over segmentation.

Bhoi and Meher [36] presented a method for the removal of Gaussian noise for MRI images. It

performed well in terms of peak signal to noise ratio (PSNR) over many well-known spatial

and wavelet domain methods. The method also retained the edges beside the region growing

methods for segmenting the MRI brain images.

Bhandarkar and Nammalwar [37] investigated the application of a hierarchical self-organizing

map (HSOM) to the problem of segmentation of multispectral MRI images. The HSOM was

composed of several layers of self-organizing maps (SOMs) organized in a pyramidal fashion.

SOMs were used for the segmentation of multispectral MRI images, but the results often suffer

from under segmentation or over segmentation.

James Tilton [38] described an approach for producing high quality hierarchically related

image segmentation method. The hierarchically related image segmentations were at different

levels in which the less-detailed segmentations could be produced from specific region merg-

ing algorithm. The region merging based hierarchical segmentation (HSEG) was presented,

along with its recursive hierarchical segmentation (RHSEG). It was applied for exploiting the
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information content from the segmentation hierarchy based on changes in the region features.

The seed point selection in the hierarchical segmentation as well as recursive hierarchical

segmentation was still challenging in this approach.

Jabbar et al. [39] explained the major role of the image segmentation in biomedical imaging

applications such as the enumeration of tissue volume diagnosis, confinement of pathology

analysis of anatomical structure, treatment planning, partial volume improvement of practical

imaging data, and computer incorporated surgery.

Jaya et al. [40] explained that the tumor types and classification of the tumor could straightfor-

wardly wipe out all the fit brain cells. They explained the detail survey about the brain tumor

and explained the effect of brain tumor. They also explained the brain tumor strong cells by

crowding further parts of the brain and bringing about inflammation, brain swelling, and

pressure inside the skull.

Jue Wu et al. [41] proposed a framework for multi-object segmentation of deep brain struc-

tures, which have significant shape variations and relatively small sizes in medical brain

images. The method suggested a template-based framework, which fused the information of

edge features, region statistics, and inter-structure constraints to detect and locate all the

targeted brain structures. The multi-object template was organized in the form of a hierarchical

Markov dependence tree. It was applicable for multi-object segmentation of deep brain struc-

tures (caudate nucleus, putamen, and thalamus) in the MRI brain images.

Kekre et al. [42] presented a vector quantization segmentation method to detect cancerous mass

from MRI images. In order to increase the radiologist’s diagnostic performance, a computer-

aided diagnosis scheme was developed to improve the detection of primary signatures of these

diseased masses and micro-classifications.

Corso et al. [43] presented a method for automatic segmentation of heterogeneous image data

where the Bayesian formulation was included to incorporate the soft model assignments for

calculating affinities.

Liao et al. [44] proposed a fast spatially constrained kernel clustering algorithm for segmenta-

tion which corrected the intensity in homogeneities for the MRI brain images. A filter for

random noise removal was adapted to reduce the noise in MRI images. This parametric filter,

named Non-local means, was highly dependent on the setting of its parameters.

Anand et al. [45] discussed a wavelet-based bilateral filtering scheme for noise reduction in

magnetic resonance images. In this method, an algorithmwas proposed for 2D image de-noising

and segmentation using redundant discrete wavelet transform. A two-stage de-noising algo-

rithm was presented for the image segmentation. The importance of noise removal for the MRI

was explained.

Cybenko et al. [46] explained the benefit of neural networks that lies in the subsequent theoretical

facets. First, the neural networks are data-driven self-adaptive methods in which they can fine-

tune themselves to the data exclusive of any clear specification of functional or distributional

form for the unique model. Second, they are universal functional approximations in which

neural networks can approximate the functions with random accuracy. It explained the impor-

tance of classification process in brain tumor detection.
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Wan et al. [47] reported that the neural networks were non-linear models, which made them

stretchable in the model and define real world intricate relationships. The neural networks that

are able to approximate the subsequent probabilities, offer the basis for setting up classification

rules and statistical analysis.

Pratt et al. [48] explained the RG method that involved the selection of initial seed points. It

examined the neighboring pixels as initial “seed points” and determined whether the pixel

neighbors should be added to the region or not based on certain conditions. The importance of

the seed point selection was also explained.

In all the above methods, region growing methods and it steps for segmenting and detecting

tumor in dark abnormalities of the MRI brain images are discussed.

1.4.3. Image segmentation using genetic algorithm-based method

The genetic algorithm (GA) description and some of the recent researches for segmentation

based on genetic methodologies are as follows:

The genetic algorithm (GA) is a population-based stochastic search procedure to find exact

solutions to the optimization and search problems. The GA creates a sequence of populations

for each successive generation by using a selection mechanism and the operators such as

selection, crossover, and mutation.

The GA explains an objective function or fitness function value used to evaluate the ability of

each chromosome for providing a satisfactory solution to the problem ([49]). The selection

procedure, modeled on nature’s survival-of-the-fittest mechanism, ensures that the fitter chro-

mosomes have a greater number of off springs in the subsequent generations. For the cross-

over, two chromosomes are randomly chosen from the population set. After crossover

mutation is the second operator which is used for randomizing the search. Mutation alters the

content of the chromosomes at a randomly selected position of the chromosome, after deter-

mining whether the chromosome satisfies the mutation probability.

Mahindra Pratap Panigrahy et al. [50] proposed a face recognition method using GA and

neural networks. The pattern recognition or face recognition problems deal with the combina-

tions of GA with BPNN. The pattern recognition is a problem in time complexity because it

requires a careful investigation about different type of patterns for huge database.

Elnomery Zanaty and Ahmed Ghiduk [51] presented a hybridization of the GA and seed region

growing to produce medical image segmentation. A new fitness function was presented for

generating global minima of the objective function, and a chromosome representation suitable

for the process of segmentation was proposed. The RG algorithm used an initial seed point to

find accurate regions for each gene. The fitness function was used to evolve the population for

getting the best region for each gene. The chromosomes were updated by applying the operators

of GA to evolve segmentation results. The time complexity was a drawback of this method,

because the calculations of fitness function for each population set took time.

Wang et al. [52] presented a combined GA with clustering FCMmethod. The parameters in the

GA were adjusted adaptively according to the value and the varying velocity of individual

fitness to increase the genetic algorithm’s adaptability. The constraint based on the second
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order derivative of histogram was introduced into genetic algorithm to reduce the searching

scope and increase the efficiency of calculation. The combined GA with FCM clustering

method suffered due to over segmentation problem.

Halder et al. [53] described a GA-based approach for gray-scale image segmentation that seg-

mented the image into various constituent parts automatically. They used FCM clustering to

help in generating the population of GA to automatically segment the image. The FCM algo-

rithm assigned pixels to each category by using fuzzy membership function and then adjusted

the values of the cluster centers encoded in the chromosome, replacing them by the mean points

of the respective clusters. The main disadvantage of the hybridization methods was the difficulty

in searching the proper number of classes in case of FCM which lacked the number of clusters.

Mohamad Awad et al. [54] discussed a multi-component image segmentation using a genetic

algorithm and artificial neural network. Several methods were developed to segment the multi-

component images. The multi component image segmentation method was developed using a

non-parametric unsupervised artificial neural network called Kohonen’s Self-Organizing Map

(SOM) and hybrid genetic algorithm (HGA).The SOM was used to detect the main features of

the image; then, HGA is used to cluster the image into homogeneous regions without any prior

knowledge. These were performed on different satellite images to confirm the efficiency and

robustness of the SOM–HGA method compared with the iterative self-organizing DATA analy-

sis technique (ISODATA).

Peter Angeline et al. [29] stated an evolutionary algorithm that constructed recurrent neural

networks. The GA and evolutionary programming are population-based search method that

has shown promise in such complex tasks. The standard methods to induct both the structure

and weight values of recurrent neural networks have assigned an assumed class of architec-

tures to every task. This paper argued that the GA were inappropriate for the network

acquisition and described an evolutionary program that simultaneously acquired both the

structure and weights for the recurrent networks.

Insung Jung et al. [55] described a pattern classification of back-propagation algorithm using

exclusive connecting network. The objective was to design a pattern classification model for

decision support system based on the BP algorithm. The standard BPNN model connected

each node from input to output layers. Time complexity of the algorithm was high and the

error rate was small when the training was performed.

Amiya Halder et al. [56] proposed an unsupervised dynamic image segmentation using fuzzy

Hopfield neural network with genetic algorithm. The genetic algorithm-based segmentation

method could automatically segment the gray-scale images. This method mainly explained the

spatial unsupervised gray-scale image segmentation that divided an image into regions. The

aim of this algorithm was to produce a precise segmentation of images using intensity infor-

mation along with neighborhood relationships. Fuzzy Hopfield Neural Network (FHNN)

clustering helps to generate the population of genetic algorithm and it automatically segments

the images with good quality.

Maulik [57] presented a detailed survey of the applications of GAs to medical image segmen-

tation. The main challenges and issues in integrating GA for solving the optimization
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problems in medical image segmentation were presented. The choices of the different genetic

operators as well as the termination criteria were discussed. The important issues in GA and

the expert knowledge, integration with local search algorithms were also discussed.

David Montana et al. [58] proposed training feed forward neural networks using genetic

algorithms. The multilayered feed forward neural networks possess a number of properties

which make them particularly suited to complex pattern classification problems. The genetic

algorithms are a class of optimization procedures which are good at exploring a large and

complex space in an intelligent way to find the values close to the global optimum. Hence, they

are well suited to the problem of training feed forward networks.

1.5. Results and discussion

This section describes some of the experimental results of the proposed GFSMRG with BPNN

technique using the MRI brain images with and without tumor. The preprocessed image and

histogram generated image are shown in Figure 12.

1.6. Conclusion

MRI using segmentation method is an important diagnostic tool for the prediction of brain

tumors. This chapter explains about the different segmentation methodologies for brain tumor

segmentation. With a sound mechanism and clear imaging of soft tissues, the diagnosis of a

patient can be scientific and rational segmentation can do with new artificial methodologies. It

enables the doctors to grasp the exact progression of the disease state, which would help to

make a decision about the appropriate treatment, surgery and following-up for a series of

disease control measures. The computer-aided and automated segmentation tool and its anal-

ysis has reduced the workload of doctors and improved the diagnostic accuracy of the para-

medical analysis.

Figure 12. (a) Input image, (b) FCM [21], (c) RG (Shafaf [31]), and (d) GA with fuzzy ([59].
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