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Abstract

Tropical cyclone (TC) is one of the major meteorology disasters, as they lead to
deaths, destroy the infrastructure and the environment. Therefore, how to improve the
predictability of TC’s activities, such as formation, track, and intensity, is very impor-
tant and is considered an important task for current operational predicting TC centers
inmany countries. However, predicting TC’s activities has remained a big challenge for
meteorologists due to our incomplete understanding of the multiscale interaction of
TCs with the ambient environment and the limitation of numerical weather forecast
tools. Hence, this chapter will exhibit some techniques to improve the ability to predict
the formation and track of TCs using an ensemble prediction system. Particularly, the
Local Ensemble Transform Kalman Filter (LETKF) scheme and its implementation in
theWRFModel, as well as the Vortex tracking method that has been applied for the
forecast of TCs formation, will be presented in subSection 1. Application of Breeding
Ensemble to Tropical Cyclone Track Forecasts using the Regional Atmospheric Model-
ing System (RAMS) model will be introduced in subSection 2.

Keywords: The WRF-LETKF system, Ensemble forecast technique, Breeding
Ensemble, data assimilation system, Tropical cyclone forecast

1. Introduction

1.1 The forecast of TCs formation using the ensemble Kalman filter

Among several approaches for real-time monitoring and forecasting of TC forma-
tion, direct numerical products from global and regional weather prediction models
appear to be the most reliable at present, despite their inherent limitations and
uncertainties (e.g., see [1, 2]). The skillful performance of TC formation forecasts by
numerical models has been well documented in many previous studies [3–8]. This
achievement of numerical models is attributed to a variety of advanced research on
upgrading parameterizations of physics, resolution, computational resources, and
data assimilation schemes [1, 9]. Among several different assimilation schemes, the
ensemble Kalman filter (EnKF) has been extensively applied to many practical prob-
lems in recent years due to its straightforward implementation for TC forecast appli-
cations [10–16]. The use of EnKF for TC forecasting applications is increasingly
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popular, given the current availability of real-time flight reconnaissance data that
allows direct assimilation of airborne observations without the need of a bogus vortex
(e.g., see [10, 14–16]). In essence, the development of EnKF addressed the problem
when using variational assimilation schemes in which the background covariance
matrix is allowed to be time-dependent. Hence, the model would adapt better with
fast-evolving and complicated dynamical systems such as TCs or mesoscale convec-
tive systems [12, 17–19]. There is an efficient method of implementing an Ensemble
Kalman Filter (EnKF), which was called a Local Ensemble Transform Kalman Filter
(LETKF) scheme.

1.2 Data assimilation system

In this section, the LETKF algorithm proposed by Ott et al. [20] and Hunt et al.
[21] is adopted and implemented for the WRF Model. The primary usage of the
LETKF algorithm is utilizing the background ensemble matrix as an operator to
transform state vectors from a model space spanned by the model grid points within
a local patch to an ensemble space spanned by ensemble members. The procedures
for calculating matrix and generating the ensemble analyses are executed in this low
dimension ensemble space at every single grid point. In this sense, the LETKF
scheme allows the ensemble space to be performed locally and in parallel efficiently
for practical problems, especially when carrying out a large-volume of data (e.g.,
see [8, 11, 12, 22–25]).

With its promising capability, LETKF has been implemented in the WRF Model
(V3.6, hereafter referred to as the WRF-LETKF system). With an aim to practical
forecasting applications, all the observations utilizing in the WRF – LETKF scheme
are preprocessing in a quality control taken by the WRF data assimilation (WRFDA)
component. In addition, the WRFDA component also generates lateral boundary
conditions for each ensemble member once obtained the analysis update. Hence, each
ensemble member possesses its own boundary dynamically consistent with its own
updated initial conditions. More details in the WRF-LETKF design can be found in
[12, 24]. The focal point here is how the ensembles with and without augmented
observations perform. In this regard, the relative differences in the output among
these ensembles can derive the main effects of additional augmented observations.

To begin the ensemble system, a first-guess background is generated in a cold-
start ensemble by first using 3DVAR scheme to produce an analysis from a GFS
initial condition. Random perturbations with standard deviations of 1 ms�1 for the
wind field, 1 K for temperature, and 1 � 10�3 kgkg�1 for specific humidity at all
model grid points are then added to the 3DVAR-generated analyses for the cold-
start ensemble. The 3DVAR-generated analyses as initial conditions for 12-h run-
ning in a manner that the outputs from these 12-h integrations can be subsequently
used as a warm-start background for the LETKF ensemble assimilation in the next
cycle. Note that these random perturbations are added only for the first cold-start
cycle to create a background ensemble. All subsequent warm-run cycles use the
WRF-LETKF 12-h forecasts as a background ensemble and so no additional random
noises are necessary. The newly generated analysis perturbation ensemble at each
cycle is then added to the GFS analysis to produce the next ensemble initial
conditions when run in the cycling mode as described in [26].

1.3 The LETKF algorithm

To get a better understanding of the LETKF algorithm mentioned in the previ-
ous sub-section. A brief description of this LETKF algorithm that developed by Kieu
et al. [12] has been presented below:
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Assume that give a background ensemble {xb ið Þ: i = 1, 2, … , k}, where k is the
number of ensemble members (assuming that the analysis is taken one at a time, so
the time index is not included). According to Hunt et al. [21], an ensemble mean �x b

and an ensemble perturbation matrix Xb are defined respectively as:

�xb ¼
1

k

X

k

i¼1

xb ið Þ:

Xb ¼ xb 1ð Þ � �xb,xb 2ð Þ � �xb, … ,xb kð Þ � �xb
n o

: (1)

Let x = �xb + Xbw, where w is a local vector in the ensemble space, the local cost
function to be minimized in the ensemble space is given by:

ĵ wð Þ ¼ k� 1ð ÞwT I � Xb
� �T

Xb Xb
� �T

h i�1
Xb

� �

wþ J xb þXbw
� �

, (2)

Where J[xb þXbw] is the cost function in the model space. If one defines the

null space of Xb as N = {v|Xbv ¼ 0}, then the cost function Ĵ(w) is divided into two
parts: one containing the component of w in N (the first term in Eq. (2)), and the
second depending on the components of w that are orthogonal to N. By requiring

that the mean analysis state �wa is orthogonal to N such that the cost function Ĵ(w) is
minimized, the mean analysis state and its corresponding analysis error covariance
matrix in the ensemble space can be found as:

�wa ¼ P̂
a
Yb
� �T

R�1 y0
–H �xb

� �� �

(3)

P̂
a
¼ k� 1ð ÞIþ Yb

� �T
R�1Yb

h i�1
, (4)

Where Yb� H(xb ið Þ � �xb) is the ensemble matrix of background perturbations
valid at the observation locations, and R is the observational error covariance
matrix. By noting that the analysis error covariance matrix Pa in the model space

and P̂
a
in the ensemble space have a simple connection of Pa = XbP̂

a
Xb
� �T

, the
analysis ensemble perturbation matrix Xa can be chosen as follows:

Xa ¼ Xb k� 1ð ÞP̂
a

h i1=2
: (5)

The analysis ensemble xa is finally obtained as:

xa ið Þ ¼ �xb þ Xb
�wa þ k� 1ð ÞP̂

a ið Þ
h i1=2

� �

: (6)

Detailed handling of more general nonlinear and synchronous observations in
LETKF can be found in [21]. It should be noticed that the above formulas are only
valid without model errors. To take into account the model errors, Hunt et al. [21]
suggested that a multiplicative factor should be introduced in Eq. (4) (specifically,
the first factor on the right hand side of Eq. (4)). This simple additional multiplica-
tive inflation is easy to implement in the scheme, and has been shown to be efficient
in many applications of the LETKF (e.g., see [25, 27, 28]).
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1.4 Vortex tracking method

Constructing a suitable vortex-tracking algorithm is a must-have procedure to
detect the formation of a newly developed TC center in all ensemble members since
their outputs are diverse. A good detection scheme allows one to define and verify
the location and the timing of TC formation centers. This step is crucial in every TC
formation study, due to the difficulties in capturing the incoherent structure of
tropical cyclones at the early genesis stages. More precisely, one cannot apply
general criteria such as a midlevel warm-core anomaly, maximum vorticity center
for the tropical disturbances as for mature TCs. Instead, the early formation of a
tropical depression is often imprinted by the existence of an upper-level cold core
and/or a weak surface low pressure rather than a midlevel warm core (see, e.g.,
[29, 30]). Thus, very few conditions can be practically applied to detect a formation
center during the genesis stage. To detect TC formation centers for real-time fore-
cast, a simple scheme has been built upon standard conditions related to the maxi-
mum surface wind and the minimum central pressure, as follows:

First, the minimum sea level pressure Pmin within the study area is searched at
every model grid point of each ensemble member output at each forecast lead time.
Any location with Pmin < 1004 hPa will be noted down as a potential candidate
for TC formation location at that forecast lead time for that particular ensemble
member.

Second, once a possible location of TC formation is defined, the maximum 10-m
wind speed Vmax in an area of 40 � 40 surrounding the minimum pressure center is
checked and recorded. A TC formation center will be marked if the condition
Vmax ≥ 10 ms�1 is satisfied. It is noteworthy that this value is considerably smaller
than the global definition of a tropical depression wind speed (�17 ms�1), due to
the relatively coarse 27�/9-km resolution configuration of WRF-LETKF system.
Visualizing verification of each TC circulation center detected based on this thresh-
old proves that these criteria can properly identify the center of tropical cyclone like
vortex during the genesis stage. Therefore, this threshold for Vmax is used for all
genesis analyses. In fact, these criteria of tracking TC formation centers are some-
what intuitive and require further verification. However, this approach is accept-
able in evaluating the augmented observational data impacts on TC formation
forecasts among ensemble forecasts. As long as the tracking scheme remains certain
in all analyses, the comparison of TC formation forecasts should answer the ques-
tion about the performance of augmented observations in ensemble forecasts.

1.4.1 Example 1

The WRF-LETKF (WRF V3.6) system has been applied to study the formation
of Typhoon Wutip. With target is to evaluate the sensitivity of TC formation
forecast to different types of augmented observations. The WRF-LETKF system is
designed in such a way that all observations are subject to quality control by the
WRF data assimilation (WRFDA) component before used by the LETKF algorithm
(More details about the implementation of the WRF-LETKF design can be found in
[12, 22]. There is a total of 21 ensemble members was made (due to limited compu-
tational and storage resources) and all ensemble experiments are integrated for
three days starting from 1200 UTC 23 September, which is approximately 48 h
before a tropical depression precursor of Wutip was first reported in the TC vital
record at 1200 UTC 25 September. The multiple physical schemes have been used in
categorizing among ensemble experiments are 1) two cumulus parameterization
schemes including the Betts–Miller–Janjic´ (BMJ) cumulus parameterization and
the Kain–Fritsch with shallow convection schemes, 2) three planetary boundary
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layer (PBL) parameterization schemes including the Yonsei University, the Mellor–
Yamada–Janjic´, and the simple Medium-Range Forecast (MRF) schemes, 3) three
microphysical schemes including the WSM 3 microphysics, the Kessler, and the Lin
et al. schemes; and 4) two longwave radiative schemes including the Dudhia and
the Goddard schemes for both longwave and shortwave radiations. The cold start
cycle is therefore initialized at 0000 UTC 23 September to generate a background
ensemble for the first-guess cycle at 1200 UTC 23 September. Afterwards, the
subsequent cycles are implemented at every 6 h from 1200 UTC 23 September to
1200 UTC 26 September.

The augmented observational data used in the WRF-LETKF assimilation scheme
include two main sources. The first is the satellite data (CIMSS-AMV) derived
atmospheric motion vector (AMV) data maintained by the Cooperative Institute for
Meteorological Satellite Studies (CIMSS), University of Wisconsin [21, 31–34] due to
this data covers a large area where TC genesis may take place. The second source of
local augmented observations in the domain of influence to Vietnam’s coastal region
(DOIV) is also used, including 96 aviation routine weather (METAR) reports from
routine scheduled observations, 31 ship/buoy (SHIP/BUOY) station reports, 59
enhanced sounding stations (SOUND), and 404 surface synoptic observations
(SYNOP) reports of weather observations during the 0000 UTC 24 September–0000
UTC 27 September period.

Results show critical impacts of the (CIMSS-AMV) data in improving the large –
scale environment favorable or hostile to the formation of Typhoon Wutip among
ensemble members, which is dynamically controlled by monsoon trough. The
results show the optimality of data impacts at cycle 36 h prior to Wutip’s observed
formation and decrease as forecast cycles are closer to formation period. In contrast,
the data assimilation with only surface and local station data proves that these
source data are not enough to help describe the strength of monsoon trough due to
their scattered distributions (Figures 1–3).

By choosing Typhoon Wutip as a case study, it was demonstrated that the initial
conditions for tropical cyclogeneses in large-scale monsoon trough environment are
sensitive to augmented observations. It could allow a range of outcomes for timing
and location predictability of TC formation, especially at 36-hr cycle ensemble. Our
results could present the importance of augmented observations, especially the

Figure 1.
Boxplots of the timing for Wutip formation for three consecutive cycles 1200 UTC 23 Sep, 0000 UTC 24 Sep,
and 1200 UTC 24 Sep, corresponding to 48, 36, and 24 h prior to the formation of Wutip depression for (a)
the WRF-LETKF, (b) assimilation without the CIMSS-AMV data (NAMV), and (c) the GFS initial data
[hereafter to as no data assimilation (NDA) ensemble]. The bold cross denotes the actual time that Wutip first
became a tropical depression at 1200 UTC 25 Sep [35].

5

Application of Kalman Filter and Breeding Ensemble Technique to Forecast the Tropical…
DOI: http://dx.doi.org/10.5772/intechopen.97783



satellite AMV data, for the prediction of TC formation at certain lead times that are
vital for operational TC forecasts. This case study is typical for TC formation in the
WPAC basin, but not representative and may not be applied to other tropical
cyclogenesis pathways. While WRF-LETKF has been utilized in forecasting tropical
cyclogenesis in the marsupial paradigm of African Easterly Wave [36, 37], it has not
been focused in the physical mechanisms of TCs formation in the BIEN DONG
basin before. Wutip’s formation is strongly rooted in the monsoon trough, as most
of the tropical cyclones in the BIEN DONG form within this pattern per year. The
performance of WRF-LETKF with augmented observations in this case study has

Figure 2.
Distribution of the location of the Wutip’s formation centers as forecast by the WRF-LETKF (triangle), the
assimilation without the CIMSS-AMV data ensemble (circle), and no data assimilation ensemble (cross) for
(a) 48-, (b) 36-, and (c) 24-h cycles. Color symbols denote the ensemble means of corresponding forecasts [35].

Figure 3.
Ensemble mean distance errors between the forecasted and observed location of Wutip’s formation reported at
1200 UTC 25 Sep for three cycles of 48, 36, and 24 h obtained from the WRF-LETKF forecast (black), NDA
forecast (stripe), and NAMV forecasts (light shaded) [35].
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innovated to the upcoming studies in more properly general examination when
designing future observing systems.

2. Application of breeding ensemble to tropical cyclone track forecasts

2.1 Background

With limited range of predictability at the convective scale and short timescale
and the complex variation of nature, predicting tropical cyclone (TC) tracks and
intensity is one specific example that demonstrates vividly the sensitivity of
numerical models to uncertainties in the atmosphere [26, 38, 39]. The inherent
uncertainties associated with our current incomplete understanding of model phys-
ical processes or numerical approximations often lead to large errors in track and
intensity forecast, especially at the lead times longer 3 days or under circumstances
interacting with uneven terrain or complicated vortex mergers [40–42]. Currently,
the US Joint Typhoon Warning Center (JTWC) showed that the official track errors
in the North Western Pacific (WPAC) basin are as high as 220 km at 3-day estima-
tion and 450 km at 5-day estimation. Likewise, the intensity forecast errors make no
headway since no significant update was taken at all forecast ranges during the last
30 years. The recent effort to calculate uncertainty in TC forecasts is based on the
ensemble prediction systems. Generally, there are 3 major special techniques to
develop an ensemble forecast system include: (1) use the different initial conditions
obtained from a posterior analysis error distribution (the Monte-Carlo ensembles)
for one specific model, (2) Use a single initial condition for multiple different
prediction models; and (3) use combine both dissimilar initial conditions and dif-
ferent prediction models.

The breeding ensemble approach in the first direction was first implemented in
the operational Global Forecasting System (GFS) at the National Center for Envi-
ronmental Prediction (NCEP, by Toth and Kalnay in 1993 and 1997 [43, 44], here-
inafter TK93 and TK97, respectively) in 1993, and then became more popular and
more applied in practice. The breeding method continuously employed previous
cycles to calculate the fastest growing instabilities and then normalized these errors
vectors into the so-called the bred vectors. This procedure could allow projecting
the fastest growing modes onto the calculated bred vectors in a shade of perturba-
tions in each breeding cycle. Likewise, a similar ensemble forecasting technique
generating singular vectors instead of bred vectors is implemented in the European
Center for medium-term weather forecast (ECMWF) in early 1992 [45, 46].
Although theoretically, the fastest growing modes should be projected onto bred
vectors (at the far limit of the backward Lyapunov vectors), the experimental
results retrieved from the TK93’s breeding method indicate that the produced TC
ensemble tracks could be very similar to each other, i.e., the spread of the system
was relatively narrow (Figure 4). One possible explanation for such small ensemble
dispersion is because the bred vectors collapsed into a similar dominant direction
after several cycles, which is not an uncommon issue (e.g., see [48, 49]). The
singular vectors display the fastest growing modes in terms of orthogonal directions
within a short-range interval (via a tangential linear model). In contrast, the bred
vectors are some extent equivalent to the leading Lyapunov vectors in a nonlinear
finite-amplitude method [43, 50]. This method allows the bred vectors collapsing
afterwards, and becoming linearly independent (non-orthogonal) in the presence of
the lower dimension attractor [48, 51].

By consider both the spatial–temporal variations of the scaling vector at each
cycle, the bred vectors could capture the local growing directions and thus allow for
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larger ensemble spread [44, 52]. However, fast convective instabilities still quickly
saturate after several breeding cycles, especially within the region where the atmo-
spheric dynamics are complicated [53, 54]. Unfortunately, the TCs system act as
such complicated phenomenon with multi-scale interactions. It is expected that the
instability within the storm’s inner-core should behave differently as compared to
the outer environmental region. Previous studies (see [55– 57] indicated that per-
turbations inside the TC inner-core area often develop and propagate rapidly in the
manner of vortex Rossby waves with typical time scale of 12–24 h. Contrarily, the
large-scale environmental related-perturbations propagate in a much smaller time
scale, often manifested in terms of gravity waves and mesoscale clustering along
the most unstable regions [58]. Representing the interaction between the faster
storm-scale instabilities and slower large-scale environment is a big challenge in
constructing an ensemble breeding system for TC forecasts. Hence, this section
presented a new TC breeding approach that could help improve this challenge.

2.2 TC breeding method

Though the first breeding method presented by TK93 could capture the trend of
fastest-growing during a finite time window, the real world TCs have a finite life
cycle. Due to the high-resolution regional modeling required large computation, TC
predicting models are typically spark off only when their TCs are already first
reported in the warning centers, because it is a challenge to conserve a continuous
ensemble of breeding cycles with taking much computational capacity for a long
time. Therefore, TK93’s breeding scheme could not instantaneously acquire

Figure 4.
Schematic design of the TC-breeding ensemble technique: a) illustration of generating environmental bred
vectors and TC bred vectors during a warm start cycle (from 24 h to 18 h before the target forecast date) b)
illustration of making six pairs of lagged-averaged forecast (LAF) vectors for the first cold start cycle used in the
TC-breeding ensemble [47].
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directions of most unstable modes during the earliest cycles. Moreover, utilizing
only single re-scaling factor for both storm inner-core region and ambient environ-
ment with distinguished spatio-temporal scales does not enclose all mesoscale
unstable nodes associated with TC vortex dynamics for which perturbations at
different spatial–temporal scales grow at different rates [59]. Hence, it is
necessary to change the rescaling factors following both the flow and the scales of
instabilities [13].

Since our TC-breeding approach is focus on characterizing not only the
storm-scale but also the large-scale unstable modes and their mutual interaction,
there are two different scaling factors for these scale modes separately.

In the TK93’s breeding extended design for TC predicting (hereafter known as
the TC-breeding method or TCB), steps to make the TC-bred seeds as follows:

Step 1. Remove the GFS original vortex and insert a bogus vortex into the GFS
initial condition to obtain a new first guess xa. In which, the bogus vortex is
dynamical constructed based on the observed minimum sea-level pressure and
maximum surface wind, using the Australian Bureau of Meteorology’s Tropical
Cyclone Limited Area Prediction System (TC-LAPS) package. This step is essential
due to the weaknesses of the original GFS vortex in coarse resolution;

Step 2: adding and subtract a bred seeds di (i = 1,2,… ,6), then we have 6 first
guess x1ai = xa + di (positive sector) and x2ai = xa - di (negative sector)

Step 3: Run 6-hour lead time forecasts for both positive and negative sectors
Step 4: Separate 6-h forecasts (operators Sm and Sv) of positive sector (x1fi) and

negative sector (x2fi) from the previous breeding ensemble forecasts into an envi-
ronmental component Smx1fi and Sm x2fi) and a vortex component (Svx1fi and Sv

x2fi, Figure 4a).
Step 5: Find difference (operator H, Figure 4a) of each set of bred vector pairs

(or seeds) from previous 6-h cycles to obtain environmental bred vectors

mi ¼ Sm p
f
i � n

f
i

� 	

and the TC bred vectors vi ¼ Sv p
f
i � n

f
i

� 	

;

Step 6: normalize the environmental bred vectors (by using a normalizing
operator Cm) to obtain a new set of normalized bred vector Cmmi., then use an
orthogonal operator T to obtain an orthogonal set of environmental bred vectors
TCmmi. Here, the environmental re-scaling operator Cm acting on a vector v is
defined as:

Cmv � Λ
v

∣ vj j∣
, (7)

With the scaling factor for the environmental perturbations given by

Λ ¼
1

2Γ

ð

D

ð

z
U02 þ V 02 þ

Cp

T
T02


 �

dzdS


 �1
2

, (8)

And the norm ||.|| taken to be the energy norm as follows:

vj jj j2 ¼
1

2Γ

ð

D

ð

z
u02 þ v02 þ

Cp

T0
T02


 �

dzdS


 �1
2

,

where Γ is the normalized factor proportional to the model domain volume,
Cp = 1006 J kg�1 K�1; T0 = 300 K), D is the model domain area after the model
vortex was filtered, U0 ¼ V 0 ¼ 1:8 ms�1, and T0 ¼ 0:7K. These values are
established in the study of Saito et al. [13], which are also consistent with the
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previous estimation by Wang and Bishop [60]; Repeat step 6 for the TC bred
vectors with operator Cx to obtain a set of orthogonal TC bred vectors TCxvi.

Step 7. Make a new pairs of breeding members by adding/subtracting the
environmental and TC bred components into the analysis xa, i.e.,
x1ai = xa + TCmmi + TCxvi and x2ai = xa - TCmmi - TCxvi.

Step 8: Run 6-hour lead time forecasts of all positive and negative pair to serve as
the first guess for the next analysis cycle;

Step 9. Repeat step 1–9 for the next analysis cycle;
Noted that the above steps are taken only for the warm-start mode in which the

ensemble breeding forecasts in the analysis procedure has been available since the
previous. For the cold start cycle at which the “INVEST” information for a tropical
depression is first issued, it is apparent that the bred vectors are unknown yet,
therefore the ensemble initialization requires a different procedure.

One can do the cold-start in countless ways, for example using a random Gauss-
ian noise with a prescribed error distribution, or directly use of the global GFS
ensemble forecasts. For simplicity, the approach uses the 6-h difference from pre-
vious GFS short-range forecasts for all of the cold-start ensembles. This approach,
known as lagged-averaged forecasts (LAF) from Kalnay [58], can quickly capture
the most unstable modes in the model, thus allowing the breeding ensemble to
speed up the dynamically representation to the environment. The combination of
these short-range forecasts can generate a predefined number of seeds from which
the breeding ensemble can be obtained. Consider, for example, a configuration of
the breeding ensemble experiments requires a total of six bred vectors. Those bred
vectors are initialized by taking six 6-h differences of the previous -36 h, �24 h,
�18 h, �12 h, and -6 h forecasts that are all taken from the cold start ensemble
(Figure 4b). The control forecast preprocessed directly from the GFS analysis then
adds/subtracts the given bred vectors to create an ensemble of total 13 members for
subsequent ensemble forecasts.

2.2.1 Example 2

The TC Breeding method has been implemented the Regional Atmospheric
Modeling System (RAMS, version 6.0) model to forecast the TC track in the
WPAC basin. In this study, the model domain is a region limited by 5°S–35°N and
100–150°E. This domain is sufficiently large to cover most of the tropical cyclone
that formed in the WPAC basin and part of the Tibetan plateau that affects the
large-scale steering flow of the TC tracks in the WPAC basin. The model
integration time is 60s, and the experimental maximum lead times were up to
5 days (120 h). The convection parameterization schemes used among all
experiments included a Kuo scheme, a Kain–Fristch scheme (original) and the
new Kain–Fristch scheme (modified version). Initial data for model input were
taken from the National Center for Environmental Prediction (NCEP) Global
Forecast System (GFS) operational forecast with resolution of 1° � 1°. A set of
14 tropical cyclones between 2009 and 2011 in the WPAC basin were chosen for
testing the TCB method (Table 1).

A series of 120 h forecasts for all storms in Table 1 were conducted, using the
aforementioned TC-breeding technique. The retrospective experiments include six
positive/negative pairs and a control forecast (total 13 members). Here, the control
forecasts are just the integrated results from the RAMS model with initial conditions
where the original GFS forecasts adding a bogus vortex to make sure the model
storm intensity was equivalent to the reality. The experiments used the default
mode of the TC-LAPS package in which the constructed bogus vortex that had the
horizontal resolution of 1° � 1°, and the isobaric vertical coordinates with 26
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pressure levels as 1000, 975, 950, 925, 850, 800, 750, 700, 650, 600, 550, 500, 450,
400, 350, 300, 250, 200, 150, 100, 70, 50, 30, 20, and 10 h Pa. The variables to
characterize the bogus vortex included sea level pressure (P), horizontal wind
components (U, V), temperature (T), geopotential height (H), and relative humid-
ity (RH). The cycles of all breeding ensemble were every 12 h, using the TCB
method described above. Besides, for convenience, the domain of storm-scale per-
turbation was also fixed with enclosing area of 1000 km � 1000 km, centered at the
vortex location. Three perturbed state variables in the model at the breeding cycles
included the horizontal winds and potential temperature at all pressure levels.
These cycles (12-h interval) are suitable enough to capture both the fast-growing
weather signals at the micro- to meso- scale and the slower baroclinic modes at
larger scales.

Results indicated that TCB method helps reduce the track errors. The improve-
ment is approximately 10% reduction in the track forecast errors at the 4- to 5- day
lead times as compared to deterministic forecasts integrated from GFS derived-
initial conditions. While the improvement is not significant at shorter lead time (1–3
lead times, Figure 5).

Besides, the major difference between this TCB method and the original
approach of TK93 is the dissimilarity in treatment of perturbations between large-
scale environments and storm-scale inner-core, which are then orthogonalized in
different manners. For the environmental perturbations in all experiments, a vol-
ume limited by [100–150°E] � [5°S–35°N] � [1000–10 h Pa] is chosen. In facts, the
domain size does not have significant impact on the magnitude of EBVs, when it is
important for the TBVs in some aspects. That is because storms do not always have
a fixed size, thus the use of a predefined domain with a constant radius of 1000 km
may not fully characterize the storm-scale TC-like vortex. One can design a suitable

No Name Start date End date

2009

1 CHANHOM 18z02052009 00z09052009

2 LINFA 06z17062009 12z22062009

3 GONI 00z30072009 12z09082009

4 MUJIGAE 12z08092009 00z12092009

5 KETSANA 00z25092009 06z30092009

6 PARMA 18z28092009 18z28092009

7 MIRINAE 18z26102009 12z02112009

2010

8 CONSON 18z11072010 18z17072010

9 CHANTHU 00z18072010 06z23072010

2011

10 HAIMA 00z19062011 18z24062011

11 NOCKTEN 06z25072011 15z30072011

12 NESAT 00z24092011 12z30092011

13 NALGAE 00z28092011 06z05102011

14 WASHI 00z15122011 18z19122011

Table 1.
List of storms between 2009 and 2011 in the WPAC basin used in this study.
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adaptive storm domain to optimize the effectiveness of the TCB method. However,
with a coarse resolution of 30 km, the adaptive approach cannot capture the true
detailed TC inner-core structure. For more simplicity of the experiment design in
this study, the filtering domain has a fixed horizontal radius of 1000 km in all
experiments with a warning that this constant size could be a caveat for very broad
TCs. It should be noted also that the control analysis would add or subtract the bred
vectors, and a potential drift of the control run from the actual states may shift the
entire ensemble further from the truth after several cycles. However, with the

Figure 5.
Track forecast distance errors between the TK93’s original breeding ensemble (striped column) forecasts and the
deterministic control forecasts (gray columns) for 2009–2011 seasons using the RAMS model [47].
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integration lead time of only 12 h at each cycle from the control forecast using the
GFS forecasts, such a drift is not a big issue and the ensemble thus always maintains
their close trajectory to the truth at every initial time.

Sensitivity experiments showed that the best results with �30 ensemble mem-
bers are adequate to construct a TCB technique. By gradually increasing the number
of ensemble members, the rate of reducing track error per newly added member
becomes saturated after reaching the number of 30 ensemble members (Figure 6).
This saturation of the track errors could link to the maximum information that the
orthogonalization of the bred vectors to be obtained after the system reaches its
noise level. Otherwise, adding more ensemble member could provide no further
benefit to the system, it could even slow down the computation. It should be noted
that the 30-km resolution of all ensemble experiments does not fully verify the
necessity of separating the treatments for the storm-scale bred vectors and the
large-scale bred vectors in distinguished manners. Theoretically, one could design
the experiments with higher resolution to further assess the sensitivity of the
breeding ensemble technique for more precise experiments, but this would require
a large amount of computational and storage resources beyond our current capabil-
ity. Although this minor problem about resolution, the overall track forecast
improvement with the TCB approach suggests that this approach could somehow
shed light on ensemble TC track forecast, especially under the circumstances where
the observational information is not enough to execute more complex data assimi-
lation steps in real-time forecasting systems.

3. Conclusions

This chapter has presented several techniques to improve the predictive quality
of tropical cyclone formation and trajectory. For the forecast of TCs formation, the
LETKF algorithm and its implementation in the WRF model and the Vortex track-
ing method have been introduced. Results in example 1 show that due to a better
approach in capturing the real world monsoon trough by assimilating augmented

Figure 6.
Rate of track forecast error base on the number of the ensemble members for forecast ranges: The 24-h
(diamond), 48-h (circle), 72-h (triangle), 96-h (times), and 120-h (square). The reducing rate is determined
as the difference of the track errors when adding newly member to the system at each lead time [56].
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observations available during the early stages of TCWutip, the WRF-LETKF model
had provided better forecasts about the formation location and timing of typhoon
Wutip in comparison to the forecasts that used initial conditions directly from GFS
global model. Besides, the results from this study also show the CIMSS-AMV data
played a vital role in improving the information of the large-scale environment
required for TC formation that one should consider for real-time TC forecasts. For
the tropical cyclone track forecasts, a breeding ensemble technique is introduced.
This technique is developed based on the original breeding method (TK93). Exper-
iments with 14 TCs (Table 1) in example showed a promising reduction of track
forecast errors by using the TCB technique, especially at 4–5 days forecast range.

However, both the track forecasts by TCB method and the control forecasts are
similar in the patterns of cross- and along track forecast errors. This indicated that
model inherent errors also are a significant contributor to the track forecast errors
that the TCB method is unable to eliminate. Sensitivity experiments of adding
gradually each ensemble members exhibit further that the increasing number of
members could reduce the track forecast errors, but reduction rate saturates when
the number reaches 30 dues to the inefficiency of the TCB method in orthogonaliz-
ing bred vectors. However, while the TCB method cannot eliminate model inherent
errors related to inadequate representation of sub-grid scales when using only
parameterizations of physical processes in the RAMS model or the inefficient model
resolution, this method could somehow optimize the use of the breeding ensemble
technique for tropical cyclone track forecasts in real-time forecasting systems which
do not require high computational resources.
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