

Integrating the intra- and inter-species-groups competition effects into an individual diameter at breast height growth model for mixed-species forests in Mexico

Gerónimo Quiñonez-Barraza¹, Dehai Zhao², Héctor M. De los Santos-Posadas³, José Javier Corral-Rivas⁴

¹Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. km 4.5 Carretera Durango-Mezquital. Durango, DGO. 34170, México. email: <u>duranze dero interfinitan cob</u> ²Warnell School of Forestry & Natural Resources, The University of Georgia, Athens, 180 E. Green St., Athens, GA 30602, USA. email: <u>durance durance du</u> ³Colegio de Postgraduados, Campus Montecillo. km 36.5 Carretera México-Texcoco. Texcoco, Estado de México. 56230, México. email: <u>horsento-Ouclous nu</u> ⁴ Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Río S/N Colonia Valle del Sur, Durango, DGO. 34120, México. email: <u>corretera fou douted ma</u>

> T a

Introduction

Individual distance-dependent modeling approach was used to model the growth of diameter at breast height (*dbh*) and to evaluate neighborhood effects for four species groups in natural mixed-species stands in Durango Mexico. Twenty-two species were grouped into four species groups; *Pinus* (**P**; seven species), other conifers (**OC**; three species), other broadleaves (**OB**; four species), and *Quercus* (**Q**; eight species). Four methods were used to select neighboring trees and 12 competition indices (CIs) were calculated. Several assumptions such as nonequivalent neighborhood effects were tested using the model approach.

Materials and methods

Study area and data

The data came from 44 stem-mapped re-measurement plots in two forest polygons: San Diego de Tezains Ejido and Lobos & Pescaderos Community. The plots were distributed in a systematic grid of 3 km × 3 km and measured in 2008 and were re-measured in 2013 (Figure 1).

Table 1: The number of subject trees and neighboring trees by species groups and values of δ

Spacios group	subject trees	Neighbors				
openies group		$\delta = 1.0$	$\delta = 1.5$	$\delta = 2.0$	$\delta = 2.5$	
Р	3203	11881	16708	19198	21954	
00	256	849	1183	1326	1446	
ОВ	182	758	1032	1153	1315	
Q	1192	4568	6240	7149	8150	
Total	4833	18056	25163	28826	32865	

Individual tree dbh growth model without explicitly age was developed, based on the Chapman-Richards equation (Richards, 1959).

$$dbh_{(1+a)} = \alpha_0 \left[1 - e^{-\alpha_1 a} \left(1 - \left(\frac{dbh_1}{\alpha_0} \right)^{1/\alpha_2} \right) \right]^{\alpha_2}$$
(8)

where *a* is the time interval between measurement and re-measurement (5 years), α_i are parameter to be estimated.

Adding neighborhood effects and error term resulted in the following full model:

$$dbh_{ik(1+a)} = \alpha_{i0} \left[1 - e^{-\alpha_{i1}a} \left(1 - \left(\frac{dbh_1}{\alpha_{i_0}}\right)^{1/\alpha_{i_2}} \right) \right]^{\alpha_{i_2}} + \sum_{j=1}^n \beta_{ij} CI_{ijk(1)} + \varepsilon_{ik(1+a)}$$
(9)

where $dbh_{ik(1+a)}$ is the dbh of the *k*th subject tree in the *i*th species group at measurement (1 + a), $CI_{ijk(1)}$ are the competition indices calculated for subject tree *k* of species group *i* from its neighbors that belong to species group *j*, and $\varepsilon_{ik(1 + a)}$ is the error for the *k*th tree of the species group *i*.

Due to the convergence problem, the α_o 's were fixed as 97.7 cm, 73.3 cm, 68.2 cm, 90.0 cm, the largest *dbh*, for species groups P, OC, OB, and Q, respectively.

			Res	ults						
able 2: Pa rowth mod	ble 2: Parameters estimates and their standard errors (SE) and fitting statistics of dbh owth model without competition effects									
pecies group	Parameter	Estimate	SE	RMSE	R ²	AIC	LL			

species group	Parameter	Estimate	SE	RMSE	R ²	AIC	LL
P	α1	0.0066	0.0003	1.2602	0.9819	10935	-5462
	α2	1.3838	0.0661				
ос	α ₁	0.0042	0.0009	1.2972	0.9773	935	162
	α2	0.7374	0.0879				-403
ОВ	α_1	0.0072	0.0015	1.3326	0.979	627	200
	α2	0.9963	0.1703				-309
Q	α1	0.0093	0.0007	1.0918	0.9897	3709	1940
	α_2	4.1389	1.1978				-1049

Figure 1. Study area and locations of the 44 stem-mapped plots in Durango Mexico (left side) and trees distribution in a stem-mapped plot (right side).

Distance-dependent competition indices

A crown-overlapping distance-weighted size ratio (SR) index (Tomé and Burkhart 1989) was used to calculate Cis:

$$CI = \sum_{j=1}^{n} R_{ij} f(S_{ij}) \tag{1}$$

where n is the number of competitors of a subject tree i, R_{ij} is the size ratio between the subject tree i and its jth neighbor tree, and $f(S_{ij})$ is a function of the distance (S_{ij}) between the subject tree i and its neighbor tree j.

The combinations of three SRs (*dbh*, *height* and *crown width* ratios) and four distances functions $(1/S_{ij}, 1/S_{ij}^2, e^{S_{ij}}, and 1 - e^{S_{ij}})$ resulted in 12 CIs. The preliminary analysis showed that the following five CIs were better:

$$CI1 = \sum_{j=1}^{n} \frac{dbh_j}{dbh_i} \frac{1}{S_{ij}}$$
(2)

$$CI4 = \sum_{j=1}^{n} \frac{dbh_j}{dbh_i} \left(1 - e^{S_{ij}}\right)$$
(3)

$$CI7 = \sum_{j=1}^{n} \frac{h_j}{h_i} e^{S_{ij}} \tag{4}$$

$$CI8 = \sum_{j=1}^{n} \frac{h_j}{h_i} (1 - e^{S_{ij}})$$
(5)

$$CI9 = \sum_{j=1}^{n} \frac{Cw_j}{Cw_i} \frac{1}{S_{ij}}$$
(6)

The neighbor trees for a given subject tree were defined as follows:

$$N_{j} = \begin{cases} 1 \text{ if } S_{ij} < \left(\frac{\delta C w_{i}}{2} + \frac{\delta C w_{j}}{2}\right) \\ 0 & \text{Otherwise} \end{cases}$$
(7)

where N_i is the neighbor tree for the subject tree *i* and δ could be 1.0, 1.5, 2.0, or 2.5.

Table 3: The log-likelihood of equivalent-neighborhood-effects models by species group and CI

	Equivalent neighborhood effects (all combined species groups)						
species group	CI1	CI4	CI7	CI8	CI9		
Ρ	(-5458)*	(-5452)*	(-5456)*	(-5462)	(-5460)*		
00	(-461)*	(-461)*	(-463)	(-463)	(-463)		
OB	(-303)*	(-305)*	(-309)	(-309)	(-306)*		
Q	(-1849)	(-1849)	(-1849)	(-18475)*	(-1849)		

Red, green, and yellow colors represents negative, positive and null equivalent neighborhood effects.

Table 4: The log-likelihood of nonequivalent-neighborhood-effects models by eachspecies group and by Cl

* indicates that nonequivalent-neighborhood-effects model was better than equivalent-neighborhood-effect model.

Conclusions

Nonequivalent neighborhood effects assumption was supported. The negative con-group neighboring effects existed for all species groups, except for *Quercus*. All detectable hetero-group effects were negative, except that species group *Pinus* had positive effects on species group *Quercus*.

Literature cited

Tomé M, Burkhart HE (1989) Distance-dependent competition measures for predicting growth of individual trees. Forest Science 35:816–831.

Richards F (1959) A flexible growth function for empirical use. Journal of Experimental Botany 10:290–301.