

Fastest detection of ischemic penumbra using ASAP-ASL with secure and comprehensive 10min-MRI Protocol including Chest MRA

Y. Niiya¹, D. Oura², S. Echizenya¹, T. Yamauchi¹, M. Iwasaki¹, K. Furukaw (A. Abumiya¹, S. Mabuchi¹.

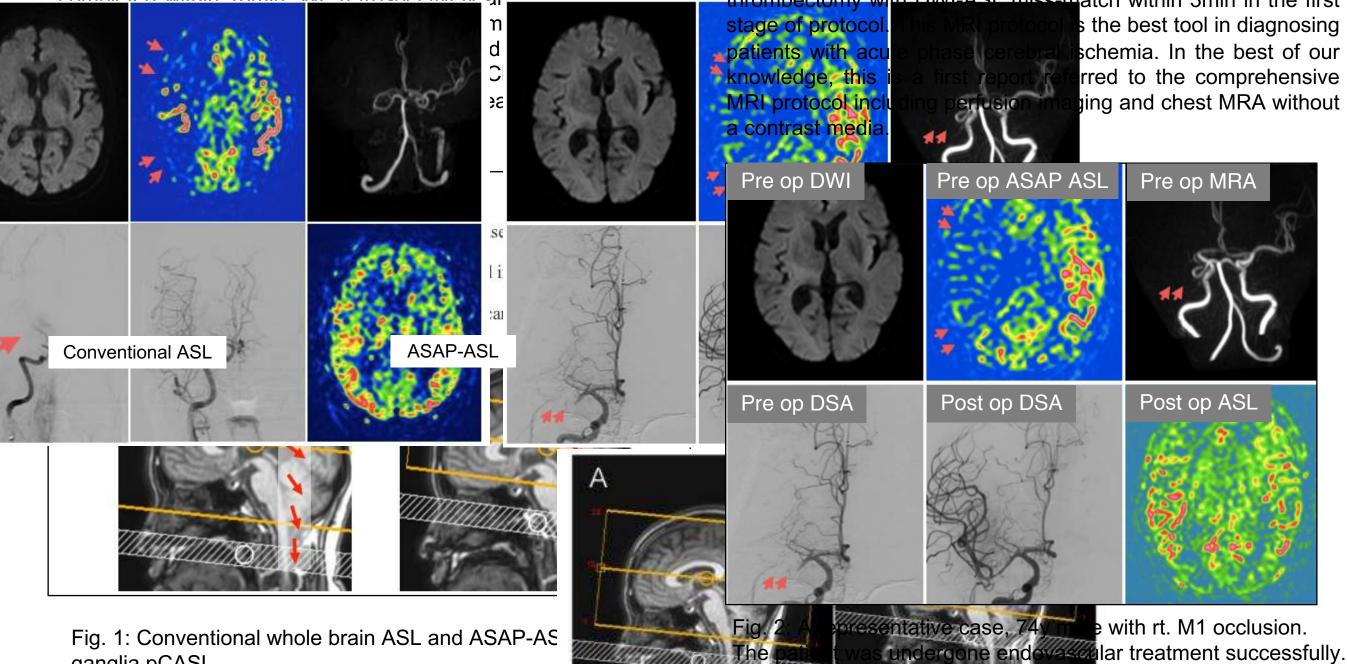
¹Otaru General Hospital, Neurosurgery, Otaru, Japan. ²Otaru General Hospital, Radiology, Otaru, Japan.

Background and Aim

In acute cerebral ischemia with large vessel occlusion, the brain imaging is extremely important in making decision whether to apply a mechanical thrombectomy. However, MRI protocol including a complicated technique may delay the start of the therapy. We have established an optimized and quick MRI protocol including "Acute Stroke Assessment using rapid Pseudo-continuous Arterial Spin Labeling: ASAP-ASL) and chest-MRA.

Method

Our MRI protocol is shown in table2. This MRI protocol is completed within 10min We retrospectively applying the seese


Result

169 consecutive patients were performed this MRI protocol after the onset. 54 patients were diagnosed as intracranial hemorrhage at the stage of survey scan and DWI. 44 patients were performed all the sequence, and undergone mechanical thrombectomy (Fig. 2). DWI and ASL perfusion imaging clearly revealed irreversible cerebral infarction and ischemic penumbra in all of these patients within 3min from the start of the examination. In addition, 2 patients with type A aortic dissection were detected by chest MRA (Fig. 3).

Conclusion

All the patients were precisely diagnosed using this optimized MRI protocol. Especially, we could decide to apply mechanical

thrombectomy with DWI-ASI miss-match within 3min in the first the best tool in diagnosing chemia. In the best of our rred to the comprehensive ging and chest MRA without

ganglia pCASL

	Sequence	FOV	Scan time	TR / TE (ms)	label distance (mm)	post Label delay (ms)	label duration (ms)	slice thickness (mm)	slice number	matrix size (mm)	NE
Conventior	nal 2D TFE-EPI	240×240	4:30	4356 / 16	95	1800	1600	5	22	2.75	30
ASAP-ASL	210-210	0:21 - 1:45	3949 / 7.8	65	1300	2000	10	6	3.33	2-1	

Table1: Parameters of conventional whole brain ASL and ASAP-ASL: Basal-ganglia pCASL

	Sequence	TR / TE, ms	FOV, mm	Matrix size, mm	Slice th and number	SENSE	Scan time
DWI	SE-EPI	2283 / 79	230 × 230	1.8 × 2.34	5 mm× 22 slice	3	0 min 14 sec
ASAP-ASL	FFE-EPI	3510 / 9.2	240 × 240	3.33×3.33	10 mm× 6 slice	3	1 min 17 sec
Head MRA	FFE	17 / 3.5	200 × 200	0.7 × 1	1 mm × 90 slice	3	1 min 14 sec
FLAIR	TSE	8000 / 120	230 × 186	1.11 × 1.56	5 mm× 22 slice	2.5	0 min 48 sec
T2*WI	FFE	428 / 16	220 × 187	1.2 × 1.2	5 mm× 22 slice	3	0 min 22 sec
Neck MRA	FFE	18 / 3.5	200 × 200	1 × 1	1 mm × 120 slice	3	1 min 44 sec
Chest Coronal	TFE	6.6 / 3.9	430 × 430	2.5 × 2.5	3mm × 70 slice	2	1min 10 sec
						Total time	6 min 49 se

Table 2: Our MRI protocol for fastest detection of ischemic penumbra using ASAP-ASLincluding Chest MRA

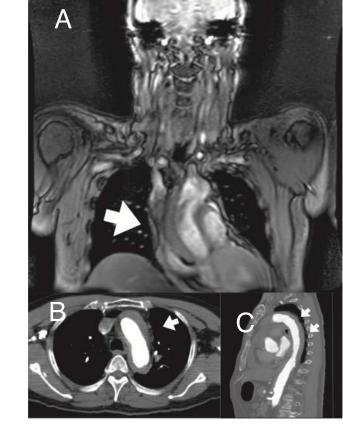


Fig. 3: A representative case with cerebral ischemia caused by aortic dissection which was diagnosed by chest MRA (A). B, C: Enhanced chest CT.

