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Abstract

Cardiovascular diseases are a significant health problem worldwide. To date, 
there is a lack of awareness that perinatal factors can predispose to CVD before 
birth. Gestational diabetes mellitus is an increasingly prevalent disease associated 
with poor fetal outcomes and CVD in the offspring. Evidence from the last decades 
suggests that GDM causes endothelial dysfunction and impairs nutrient transfer 
across the placenta to the fetus. These pathological features are associated with 
altered vascular and trophoblastic homeostasis in the placenta, predisposing the 
offspring to vascular injury, altered metabolic condition, and future CVD. This 
chapter focuses its discussion on the to-date understanding of GDM fetoplacen-
tal vascular and nutrient transfer impairment that causes, along with the latest 
advances, limitations, and questions that remain unresolved in this field.

Keywords: gestational diabetes mellitus, cardiovascular diseases, pregnancy, 
hyperglycemia, endothelial cells

1. Introduction

Almost one of every three adults worldwide dies because of cardiovascular 
diseases (CVD), making them the most prevalent cause of morbidity and mortality 
[1]. Several factors increase the risk of suffering a CVD. They can divide into two 
groups: modifiable and non-modifiable [2]. The former are those factors that can 
be controlled and modified by behavior, such as physical activity and diet, while 
the latter ones cannot be changed, like age and genetics. Environmental factors 
include air pollution and exposure to heavy metals, such as arsenic or lead, and the 
WHO recognizes them as important CVD risk factors. They could be considered 
“modifiable”; however, considering that most of the population affected by envi-
ronmental pollution live in medium to low-income countries, their modification 
might be complex. An excellent review on this topic was published elsewhere [3]. 
The apparition of pathological conditions during pregnancy such as pre-eclampsia 
[4], maternal supraphysiological hypercholesterolemia (MSPH) [5], or gestational 
diabetes mellitus (GDM) [6] alters the fetal environment and is associated with 
an increase an increased risk of CVD in the offspring. They might be considered 
“between” modifiable and non-modifiable: In the gestational state, controlling the 
disease might prevent the fetal vascular impairment; however, after birth, there is 
a lack of evidence regarding treatments for improving their outcome and might be 
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considered a non-modifiable factor. Most of the published research focuses on the 
repercussions of maternal health after suffering pregnancy disease [7, 8]. Still, their 
effects on the cardiovascular health of the fetus have been less described.

Over the last decades, the evidence associating pregnancy diseases and fetal 
outcomes has grown. Regarding MSPH, the apparition of fatty streaks on tunica 
intima of large arteries at fetal stages [9], probably related to alterations in nutri-
ent transfer through the placenta [10], increases the risk of future cardiovascular 
events. Sadly, this condition is frequently underdiagnosed [11], and for a solid 
understanding of its prognosis more studies are needed. Preeclampsia is a relatively 
common complication of pregnancy [12]. It is associated with a slight but sustained 
increase in diastolic and systolic pressure on the offspring that seems to maintain 
for life [13, 14]. Preeclampsia also is related to Intrauterine Growth Restriction [15], 
which, in turn, is associated with an impaired vascular and metabolic condition 
[16], predisposing the offspring to worst cardiovascular outcomes. Finally, GDM 
is a more common disease with global prevalence between 6 and 7% (Europe and 
United States) and 9 and 13% (South and Central America, Asia, Africa) [17]. The 
prevalence over the last decades has been increasing in most countries [18–21]; this 
might relate to the increase in maternal body mass index and the age of a pregnancy 
[18]. In terms of fetal cardiovascular impairment, a recent meta-analysis found that 
the offspring whose gestation was affected by GDM present higher basal glucose 
and systolic pressure [6]. In another large study, GDM pregnancies increased the 
prevalence of early-onset CVD by almost 30% in the offspring [22]. This worldwide 
statistical information urges researchers and clinicians to study the repercussions 
of GDM-complicated pregnancies further. Even more, an association between 
GDM and preeclampsia has been recently described [23, 24]. This relation can be 
explained at a systemic level by the increase in the age at which women become 
pregnant and the augment in body mass index told before; besides, both are related 
to damage on endothelial cells (EC), impairing vascular homeostasis [23]. Finally, 
between GDM and MSPH, a relation was recently suggested [25, 26], where EC in 
the placental vasculature and trophoblasts might have a crucial role; however, there 
is a considerable lack of evidence in this regard. At this point seems fair to suggest 
that EC is essential for the pathological development of the three conditions men-
tioned above. We will explore the GDM-induced vascular and trophoblastic injury 
and how it can probably impair fetal vascular health in the following pages.

1.1 Gestational diabetes mellitus pathophysiology

GDM is the apparition of spontaneous hyperglycemia in pregnancy without 
the previous diagnosis of a condition whose main feature is insulin resistance (IR) 
[27]. This definition is consistent with the evidence that GDM pathophysiology 
differs from pregnancies of women with prior diabetes in multiple aspects [28] as 
discussed later.

During a healthy pregnancy, the peripheral insulin sensitivity variates: In the 
early gestation increases to promote the fill up the glycogen and adipose stores [29], 
later it declines [30], increasing maternal systemic and placental glycemia. This 
reduction of insulin sensitivity (i.e., IR) occurs due to the pregnancy variation of 
systemic and placental hormones (for example, leptin, cortisol, estrogen, progesterone) 
[31] and is matched with a 2-fold increase in insulin secretion from pancreatic 
β-cells [32]. Late gestational hyperglycemia favors the transport of glucose to the 
fetus; however, it depletes the glycogen reservoirs and induces the use of fatty acids 
as fuel [33]. In GDM, maternal insulin sensitivity almost halves [34], implying two 
consequences: less accumulation of glycogen in both muscle and liver in the early 
pregnancy and faster use of them during late pregnancy. Furthermore, once the 
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glycogen stores deplete, the use of fatty acids to obtain energy is more pronounced 
than in physiological pregnancy, leading to hypertriglyceridemia (HTG) (Figure 1).

Nonetheless, the reader is invited to reflect that a broad spectrum of clinical 
conditions related to the variable peripheral state of IR can exist [35, 36]. Finally, 
HTG and hyperglycemia alter placental vasculature [37] and fetal metabolic 
homeostasis [22, 38]. These features will be the focus of the following sections.

1.2 Gestational diabetes mellitus diagnose

Even when most of the pathophysiological features are known, reaching a 
diagnostic criterion for GDM has been troublesome. Huhn et al. [39] recently 
published a review of this topic. To date, one of the most widely accepted defini-
tions is from the International Association of Diabetes and Pregnancy Study Group 
(IADPSG) [40]. The American Diabetes Association (ADA) agreed with IADPSG; 
however, first, they suggested a more flexible criterion than IADPS [41]. Table 1 
summarizes both.

The main difference between IADPS and ADA criteria is that the former 
considers that only one of the mentioned values needs to be altered to diagnose 
GDM. At the same time, ADA suggests that at least two of them must be present 
to diagnose GDM [41]. This slight discrepancy seems to be clinically significant: 
IADPS diagnostic of GDM increases two-fold [42] or three-fold [43] compared to 

Figure 1. 
Metabolic differences between first and third trimester in healthy pregnancies, with a low degree of IR and 
previously diagnosed Diabetes mellitus. Previous low degree of insulin resistance increases the risk of developing 
GDM in the third trimester; however, since it courses without significant symptoms, previous IR repercussions 
are not usually assessed. PGDM alters the placenta’s formation in the first trimester, leading to more significant 
complications on the mother and the fetus in the third trimester.
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ADA; moreover, using the IADPS criteria for diagnosis and treatment improves 
the adverse fetal outcomes of GDM [42, 43]. In this regard, ADA recent guidelines 
validated and included the IADPS criteria for GDM diagnosis [44].

1.3 Pregestational diabetes mellitus (PGDM)

Women’s pregestational condition has historically complexed the study of GDM. 
GDM tends to appear in women with a previous degree of IR, and insufficient 
insulin synthesis or release from the pancreas before gravidity [40]. However, for 
decades, GDM was described as “any degree of glucose intolerance with onset or 
first recognition during pregnancy” [42, 45], regardless of the prior existence of 
unrecognized IR. This definition implies a severe limitation. The test for GDM is 
usually performed between the second and third trimester; but the screening for 
metabolic perturbances on women at fertile age, before pregnancy, are not actively 
pursued or a worldwide practice. In this regard, at the time of the GDM diagnose, 
there are two potential scenarios (Figure 1):

• GDM “de novo”: the increase of IR at the third trimester will trigger the dis-
ease, leading both mother and fetus to a trimester of hyperglycemia and HTG.

• PGDM: the entire pregnancy will occur under a higher IR state, only being 
detected (and treated) from the third trimester and onwards.

Both conditions are clinically different. For example, birth weight over 4 kg, 
known as macrosomia, is associated with several fetal metabolic complications 
[46]. GDM is a risk factor of macrosomia; however, it has been recently suggested 
that PGDM might cause more severe and frequent metabolic complications, 
including macrosomia, in the fetus than GDM [28, 47]. A possible explanation for 
this might rely on more prolonged exposure to higher IR consequences, such as 
hyperglycemia and HTG. HTG in pregnancy on its own is associated with macro-
somia [48]; besides, increased blood glucose, the primary manifestation of both 
GDM and PGDM, is also associated with poorer fetal outcomes [6, 49]. Both cause 
oxidative stress [50, 51], cytokine release, and meta-inflammation [52] in the form-
ing placenta, impairing its ultrastructure and the nutrient transport to the fetus. 
Nonetheless, PGDM will expose the placental vasculature since its early forma-
tion to HTG and hyperglycemia. In the next sections, we will extensively discuss 
this topic.

1.4 Gestational diabetes mellitus induced vascular injury

As stated before, hyperglycemia and HTG are characteristic features of GDM 
and cause vascular injury on the placenta. Same as what happens on type 2 diabetes 

Test IADPSG ADA

Fasting glucose ≥92 mg/dL ≥95 mg/dL

1-h glycemia after OGTT*
≥180 mg/dL ≥180 mg/dL

2-h glycemia after OGTT* ≥153 mg/dL ≥155 mg/dL

*OGTT: oral glucose tolerance test after a charge of 75 g of oral glucose.
• Both entities consider that this evaluation must be performed between 24 and 28 weeks of gestation.
• The first sample must be taken after 8 h of fasting.

Table 1. 
Diagnostic values for GDM.
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mellitus, GDM altered glucose metabolism on placental vasculature increases 
the production of reactive oxygen species (ROS) leading to oxidative stress (OS) 
[53, 54]. OS, in turn, favors the activation of Nuclear Factor kappa Beta and other 
pro-inflammatory pathways [55]. In GDM, the placenta itself expresses inflam-
matory cytokines [56]. Inflammation and OS will further induce systemic and 
placental IR, reducing the entry of glucose to cells [32, 57], impairing glycogen 
synthesis at the muscle and liver, leading to hyperglycemia and HTG. This oxidative 
and inflammatory state will also induce endothelial dysfunction (ED) impairing the 
vascular response to tissular metabolic needs, altering nutrient transfer to the fetus, 
and increasing the expression of adhesion molecules. To understand better the 
pathophysiological features of GDM on placental blood vessels and how it impairs 
the fetal metabolic condition, it is necessary first to summarize the main character-
istics of the human placenta.

1.4.1 Development of the placental vascular system

In this section, we will explore the main features of placental development. For 
an in-depth study on this topic, the reader is invited to review the recent publica-
tion done by Turco et al. [58]. In brief, after the fertilization, the zygote will course 
with successive divisions forming the blastocyst, which will, in turn, adhere to the 
endometrium and invade it. The most external epithelial layer of the blastocyst 
will produce various trophoblast cell types and generate the primary syncytium 
below the implanted embryo [59]. The outer trophoblasts cells will differentiate 
and fusion, creating the syncytiotrophoblasts [60], whereas the inner cells will 
differentiate in cytotrophoblast. The syncytiotrophoblasts invade the endometrium 
and give rise to lacunas, spaces filled with maternal blood that will enlarge, merge, 
and develop the trabecular system of the forming placenta. The structure formed by 
both cell types around the lacunae is the primary villi. Later, the fetal mesenchyme 
will penetrate the villous core forming a structure known as secondary villi. Finally, 
vascular capillaries will appear within the center of fetal mesenchyme, forming the 
tertiary villi after the third gestation week. In the following weeks, angiogenesis 
predominates, increasing capillary density in the villi by developing new branches 
from preexisting vessels. Thus, the surface area for nutrient and oxygen exchange 
between the mother and the fetus increase [61]. At this point, in terms of vascular 
development, the placenta has reached its maturity (Figure 2). It is important to 
note that there are other essential structures in placentogenesis; however, they are 
beyond the scope of this chapter.

1.4.2 Diabetes impact on placental vascular formation

Tertiary villi arise at half of the second trimester. The pathological difference 
between PGDM and GDM becomes essential at this stage: from the implantation, 
and onwards, PGDM will expose the trophoblastic layer to an insulin-resistant, 
hyperglycemic, and hypoxic environment. Exploring the detrimental effects of 
both conditions is complicated since it needs the interruption of the pregnancy 
in human studies. Nonetheless, recent data permitted insight into the alterations 
caused by GDM or PGDM on the early placenta.

Spiral arteries in the endometrium are invaded by trophoblasts and remodeled 
[62]. This remodeling turns them into a resistance vessel, favoring the fell of arterial 
pressure, increasing placental blood flow. This process occurs by a coordinated 
proliferation, differentiation, and invasion of the trophoblasts, further forming 
the placenta. Several growth factors, including insulin-like growth factor I (IGF-I), 
and II (IGF-II) among others, released from the same trophoblasts [63] and other 
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placental cell types, stimulate this process [64]. The placenta of GDM is heavier 
than healthy pregnancies, at least from the second trimester [65] and onwards [66]. 
This process is not fully understood; however, some findings have elucidated the 
role of growth factors. Placentas of IR pregnancies have an increased number of 
cytotrophoblasts, syncytiotrophoblasts, and EC due to a higher proliferation rate 
[64]. Consequently, placental vascularization in GDM is also enhanced by increased 
angiogenesis [67]. Differences in expression and secretion of growth factors from 
GDM trophoblasts themselves seem likely [68]. This increase in proliferation 
and angiogenesis has been shown in term placentas [68, 69]; yet, a recent study 
found that high IR is associated with a decrease in trophoblasts’ proliferation 
and increased apoptosis on first-trimester placentas [70]. Another recent work 
suggested that hyperinsulinemia can also exert those detrimental effects [71]. 
Apoptosis is low in early healthy pregnancies placentas [72], progressively increas-
ing until term [73]. On GDM, apoptosis analysis has led to conflicting results, 
showing a decrease [74] or an increase [75] in term placentas. Different technical 
approaches or the criteria used to diagnose GDM might explain these discrepancies; 
therefore, more detailed studies are needed. In summary, IR impairs the signaling of 
growth factors on vascular and trophoblast cells, diminishing the development and 
invasion respectively at the first trimester; however, as gestation progresses, more 
growth factors are secreted in a compensatory manner further increasing the size, 
weight, and the number of blood vessels in the placenta.

Figure 2. 
The human term placenta. Maternal blood reaches the intervillous space (lacunae) through spiral arteries. 
Then, nutrients and oxygen cross the cytotrophoblasts from the microvillous membrane to the basal membrane 
and gets to the fetal blood vessels.
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Among growth factors, IGF-I and IGF-II are potent stimulators of placental  
vascular growth, acting through their cognate receptor or insulin receptor. It is 
important to note that the insulin receptor has two isoforms: A and B. Isoform 
B presents a sequence of 12 amino acids in the α subunit that A does not have. 
This slight difference gives them different intracellular signaling and substrate 
affinity. Isoform A is associated with a mitogenic phenotype via mitogen-activated 
protein kinases (MAPK), while Isoform B induces metabolic modulation via protein 
kinase B (Akt). Moreover, IGF-II interaction with insulin receptor A induces cell 
growth and invasion, while insulin activity on the same isoform protects from 
apoptosis [76]. This differential action may explain the differences observed in 
the regulation of apoptosis and cell cycle described above. Exposure to increased 
insulin levels reduces the insulin receptor and IGF-I receptor’s signaling via insulin 
response element I and downstream targets such as Akt [63]. At this point seems 
fair to hypothesize that IR impairs placental vascular development by altering the 
insulin and IGF-I receptor signaling, dysregulating proliferation, and apoptosis. 
This impairment might explain the high immaturity level of the villous observed in 
the GDM placenta [77]. Concordant with this hypothesis, human umbilical veins 
endothelial cells (HUVEC) increase MAPK signaling probably via isoform A of the 
insulin receptor in GDM [78]. Insulin exposure reestablishes the downstream signal-
ing and membrane expression of both isoforms [78], making it an attractive thera-
peutic alternative; however, the effectiveness of insulin is highly dependent on the 
previous IR state. Indeed, obese women that develop GDM respond worse to insulin 
treatment than lean, diminishing the insulin receptor presence at the membrane and 
lesser downstream signaling [79, 80]. It is important to note that maternal obesity 
does not mean necessary IR; however, since most studies do not present evidence 
from the pregestational state, this suggestion seems fair to be made. More studies are 
needed taking this consideration since insulin does not seem to be always the better 
option. An excellent review on this matter has been published elsewhere [81].

Finally, disruption of insulin and IGF receptors signaling, observed in IR states, is 
related to insufficient trophoblasts invasion, pregnancy-associated hypertension, and 
increased pregnancy complications, including abortion [63]. In this regard, insulin 
signaling in the placenta seems crucial and will focus on in the next section.

1.4.3 Placental vasomotor alterations on GDM

The human placenta has no autonomic innervation, so vascular tone regulation 
is performed by the myogenic tone and humoral and metabolic factors. Humoral 
factors include norepinephrine [82], renin-angiotensin system (RAS), and vaso-
pressin [83]. The three of them impair invasion of the trophoblast in spiral arteries 
and alter placental vascular homeostasis. This phenomenon has been studied in 
pre-eclampsia; however, in GDM, there is a lack of evidence pointing to its potential 
pathological role. Strikingly, GDM increases the risk of pre-eclampsia from the 
first trimester and onwards [84]. Indeed, GDM curses with some of the same pre-
eclampsia’s placental vascular complications (i.e., placental hypoxia and ED) [85]. 
In particular, maternal vasopressin does not seem to affect fetal blood flow [86], 
same as norepinephrine [87]. Nonetheless, the latter is related to a reduction in fetal 
oxygen delivery. This is likely to happen in pregnancies of women with prior diabe-
tes [88] and GDM [89]: both conditions increase catecholamines plasmatic concen-
tration in part because of hyperglycemia [90]. Moreover, norepinephrine augments 
IR [91, 92], and epinephrine diminishes insulin secretion from the pancreas [93]. 
In summary, upregulation of catecholamines in GDM negatively impacts placental 
vessel homeostasis; however, further studies are needed to explore this issue.
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Several studies have highlighted the physiological role of the RAS system in 
placental development and function. A review in this regard has been recently 
published elsewhere [94]. In brief, the placenta presents all the components of RAS 
[95]. After implantation, tissular hypoxia induces syncytiotrophoblast formation, 
the remodeling of the spiral arteries, and angiogenesis. Angiotensin II receptor 1 
(AT1R) expression is increased by hypoxia in trophoblasts and spiral arteries, 
augmenting the expression of angiogenic factors [96]. In healthy pregnancies, AT1R 
is highly expressed in the trophoblasts in the first and second trimester, declining 
its levels on the third [97]. However, if hypoxia persists, the expression of AT1R 
remains high until the end of the pregnancy [98]. As mentioned above, GDM incurs 
placental hypoxia, which might increase AT1R expression in trophoblasts [99], 
vascularity in the placenta and placental weight. AT1R expression due to GDM also 
increases in other vascular beds in rodent models, increasing vascular resistance and 
systemic arterial pressure [99]. Further, GDM increases the plasma concentration 
of angiotensin II (AGII), and permanent exposure to AGII induces vasoconstric-
tion, diminishing placental blood flow and fetal oxygen delivery [100]. Also, IR 
in GDM may cause hyperinsulinemia, which in turn enhances the AT1R [101] and 
AGII [102] expression. In this regard, the relation between RAS and GDM seems 
to be even more complex. Higher plasma levels of soluble renin/prorenin recep-
tor in the early pregnancy relate to an increased risk of developing GDM in late 
pregnancy [103]. This observation is in concordance with the fact that inhibitors of 
RAS, such as losartan, improve the vascular condition in human diabetes [104, 105] 
and rodent models of GDM [106]. Furthermore, GDM also increases the plasma 
concentration of aldosterone [107], an end product of RAS. Interestingly, hyperal-
dosteronism is associated with ED [108], which will be the subject of the following 
section. Nevertheless, to the best of my knowledge, this issue has not been assessed 
on fetoplacental vessels of GDM. Finally, increased AGII umbilical cord levels are 
associated with increased IR in GDM offspring [109]. Lesser perfusion of the β-cells 
can explain this due to vasoconstriction and a reduction of insulin sensitivity [110]. 
Indeed, blockade of RAS ameliorates IR [111]. Both processes converge in EC, where 
AGII increases ROS production, favoring oxidative stress (OS) [112]. In turn, GDM 
placenta incurs in OS [54], which impairs insulin signaling in multiple points and 
induces an inflammatory response mediated by Nuclear Factor kappa B, JNK, and 
p38 MAPK [113]. On the other hand, AT1R stimulation increases the apoptosis 
in villous explants and trophoblasts, which associates with pre-eclampsia [114], 
an event that might also happen in GDM; however, further studies are needed to 
explore this intricate process.

1.4.4 Endothelial dysfunction on GDM

ED is characterized by imbalanced vasodilation and vasoconstriction, elevated 
ROS, inflammation, and a deficit of nitric oxide (NO) bioavailability [115, 116]. All 
these phenomena occur in the GDM placenta, leading to an increased vascular tone 
and reduced perfusion.

Arachidonic acid is the precursor of thromboxane A2 (TXA2), a vasoconstric-
tor, and prostacyclin, a vasodilator. The synthesis of both can occur in EC. TXA2 
acts through the TXA2 receptor (TR), present in the human umbilical vein. 
Besides, non-enzymatic oxidation of arachidonic acid produces isoprostanes [117], 
which can also interact with TR and induce constriction. GDM placentas show an 
increased synthesis of isoprostanes [54], probably due to the increased production 
of ROS. In GDM [118] and preeclampsia [119] the prostacyclin/TXA2 ratio is lower 
in the placenta. Interestingly, OS in trophoblasts increases the concentration of 
TXA2 but not prostacyclin, pointing to ROS as the responsible for this mechanism 
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that increases the vascular tone. Endothelium-derived hyperpolarization (EDH) 
is mostly unexplored in placental vessels, yet it may play a role in GDM placental 
vascular impairment. EDH exerts vasodilation via stimulation of the Ca2+-activated 
K+ channels, which hyperpolarize vascular smooth muscle cells (VSMC) [120]. It is 
hard to guess if GDM alters this mechanism. Preeclamptic pregnancies show a lesser 
EDH effect [121]; however, type 2 diabetes mellitus increases the EDH effect [122]. 
Further studies are needed to elucidate if EDH impairs or compensates ED in GDM.

Nitric oxide (NO) is probably the most characterized endothelium-derived 
vasodilator agent. Indeed, some consider that NO is the most potent vasodilator in 
the human placenta [123]. Due to its biological relevance, it is not surprising that its 
bioavailability is highly regulated. For instance, NO depends on the cellular intake 
of L-Arginine and the activity of the nitric oxide synthases. In EC, endothelial nitric 
oxide synthase (eNOS) is the primary source of NO, and cytosolic calcium, protein 
kinase A, and AKT favor the activity of this enzyme [124]. Insulin stimulates eNOS 
via AKT; besides, diabetes impairs this stimulation reducing eNOS activity, while 
reduction of NO induces IR, forming a vicious cycle [125]. On the other hand, NO 
acts on the VSMC, causing dilation via guanylyl-cyclase; however, it favors apop-
tosis [126] and inhibits proliferation [127] of the same cell type. VSMC apoptosis 
reduces the capability of resistance vessels to contract; in contrast, AGII favors 
proliferation via ROS activation of p38 MAPK [128]. Interestingly, a recent publica-
tion observed that GDM increases the insulin receptor isoform A and IGF 1R [129]. 
This gives consistency to the observations stated before: GDM enhances RAS and 
insulin receptor isoform A signaling in the placenta, both favoring the proliferation 
of VSMC; however, even when the machinery to produce NO upregulates in GDM 
[130], a reduction in its bioavailability is observed probably due to depletion by 
oxidative stress [131]. In turn, NO reduction inhibits apoptosis and further favors 
proliferation of VSMC, which will increase vascular tone, reduce perfusion, increas-
ing hypoxia, and stimulate angiogenesis and even more OS. Nonetheless, even when 
consistent, this idea (Figure 3) needs further experimental support.

Figure 3. 
Mechanisms of GDM-induced endothelial dysfunction in the human placenta. Insulin resistance, 
hyperinsulinemia, hyperglycemia, hypertriglyceridemia (HTG), and high plasma concentration of free fatty 
acids (FFA) characterize GDM. These alterations induce vasoconstriction, hypoxia, and reactive oxygen species 
(ROS) production. ROS, in turn, will increase thromboxane A2 (TxA2) and isoprostanes in endothelial cells, 
further favoring vasoconstriction. ROS also upregulates the adenosine signaling, and the adenosine/L-Arginine/
nitric oxide axis will be upregulated; however, insulin resistance diminishes endothelial nitric oxide synthase 
(eNOS) phosphorylation and nitric oxide (NO) production. Also, ROS will interact with NO and produce 
peroxynitrite, reducing NO bioavailability.
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l-Arginine also determines the synthesis of NO by eNOS. l-Arginine is trans-
formed in l-citrulline for NO production by eNOS [123]; so, NO production is 
dependent on intracellular l-Arginine content. Cationic amino acid transporter 
1 (hCAT-1) is the main responsible for the entry of l-Arginine to the cell in the 
human [132]. Interestingly, insulin, OS and the activation of adenosine receptor 
A 2A (ARA2A) induce hCAT-1 expression [133]. In this regard, even when in GDM 
impairs insulin signaling, OS and the activation of ARA2A will favor the expression 
of hCAT-1 and secure the l-Arginine entry. OS can also induce the activation of 
adenosine receptor [134]. However, the insulin effect over hCAT-1 expression and 
activity has been described as requiring functional ARA2A in HUVEC [135]. GDM 
hinders adenosine transport to the cell, increasing its extracellular concentration 
[136, 137]. Extracellular adenosine will activate ARA2A, which will induce vasodila-
tion [133]. Interestingly, adenosine can also interact with adenosine receptor A 2B 
(ARA2B), which is expressed in microvascular EC and induces angiogenesis [138]. 
The high adenosine concentration facilitates the ARA2B activation and may relate 
to the increased vascularization and weight observed in GDM placentas. A recent 
work has shown that adenosine induces fetal vessels constriction; however, GDM 
impairs its vasoconstrictor effect [139]. Going back to the above, even when the 
whole adenosine/l-Arginine/NO axis raises in GDM, the lesser bioavailability of 
NO impedes its biological effect. Likewise, NO deficit might explain why GDM 
reduces the insulin vasodilatory effect [131]. In this regard, endothelial dysfunction 
by GDM not only affects vasodilation but vasoconstriction as well, hindering the 
capability of the endothelium to regulate the vascular tone.

Finally, it is crucial to note that hypoxia [140] and hyperglycemia [141] 
induce OS. Interestingly, hyperglycemia on its own can induce hypoxia [142]. 
Mitochondrial impairment is probably the most important source of ROS in 
GDM; an excellent review has been made elsewhere [143]. Further, a recent work 
described mitochondrial dysfunction in cytotrophoblast and syncytiotrophoblast 
from GDM pregnancies. The latter seems to be more comprised in terms of ATP 
generation and increases the expression of antioxidants [144]. Nonetheless, this 
impairment is more profound when higher grades of IR are present [113] and the 
pregestational condition is highly relevant [143]. Insulin can increase the produc-
tion of antioxidants; however, in GDM placentas, the expression of antioxidants is 
increased constantly [145], making them less responsive to future oxidants insults. 
Finally, ROS can react non-enzymatically with NO, producing peroxynitrite, which 
has been shown to inhibit mitochondrial respiration and damaged mitochondria 
[146], making a vicious cycle for ROS production.

1.4.5 Placental altered nutrient transfer on GDM and fetal metabolic injury

Hyperglycemia and HTG are the most common metabolic alterations in 
GDM. Recent work evidenced that HTG in early pregnancy is related to IR, β-cell 
dysfunction, and hyperglycemia [147]. Umbilical cord blood analysis has demon-
strated that GDM causes fetal hyperinsulinemia proportional to maternal IR [148]. 
Triglyceridemia remains unaltered, but LDL concentrations increase and HDL 
diminishes in cord blood of GDM deliveries and directly associates with macroso-
mia [149]. Intriguingly, triglyceridemia remains unaltered since maternal HTG is 
better related to macrosomia than hyperglycemia itself [150–152]. In this regard, 
the relationship observed between HTG and macrosomia in GDM might have two 
possible causes: an increase in the fetal delivery of free fatty acids (FFA) posterior 
to the action of lipases or the impairment of placental homeostasis due to ED. 
The first hypothesis does not seem likely: even when GDM curses with high FFA 
maternal plasma concentration [153], cord blood FFA content remains unaltered 
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in GDM deliveries [154]. In this regard, the second hypothesis seems more plausi-
ble. HTG is related to ED; however, a mechanistic explanation is lacking to date. A 
recent review was made about this topic elsewhere [155]. A probable explanation 
for ED lies in macrophage activation by triglyceride-rich lipoproteins like Very-
Low-Density Lipoprotein (VLDL) [156]. VLDL also induces ROS production and 
expression of inflammation mediators such as Tumoral Necrosis Factor α (TNF-α) 
in EC [157]. Interestingly, TNF-α favors IR and hyperinsulinemia in GDM [32], 
hindering insulin-mediated vasodilation. Also, the oxidative environment induced 
by triglycerides may favor the NO consumption, establishing the ED. Nonetheless, 
further studies are needed to address this issue in GDM placentas.

Finally, glucose transport in the placenta is regulated by maternal glycemia and 
by the expression and activity of glucose transporters (GLUT). For transportation 
from the mother to the fetus, glucose must go through the microvillous membrane 
(MVM), at the maternal side, to the basal membrane (BM) on the fetal side [158]. 
At least 6 GLUT transporters have been identified in the placenta: GLUT1, GLUT3, 
GLUT4, GLUT8, GLUT9, and GLUT12. Nonetheless, the most abundant isoforms in 
the placenta are GLUT1 and GLUT4. GLUT1 levels increase in syncytiotrophoblasts 
along with the pregnancy progression [159]. GLUT1 expresses in the MVM 3-fold 
than in the BM. Thus, crossing the BM is the rate-limiting step for glucose transport 
to fetal circulation [160]. Indeed, increased content of GLUT1 is correlated propor-
tionally with fetal weight and macrosomia [161]. GLUT4 expression, contrarily to 
what was thought before [159], increases during gestation in the MVM, but only in 
healthy lean women [162]. In GDM, interestingly, insulin lowers mRNA of GLUT4; 
besides, various authors found increased GLUT1 expression [79, 163, 164]. Even 
more, GLUT1 upregulation is more profound in PGDM [164]. In this regard, it 
seems fair to suggest that GLUT 1 in the BM is critical for GDM pregnancy com-
plications due to increased glucose transport [165]. Hyperglycemia should limit 
GLUT1 expression in trophoblasts and favor its movement from the membrane 
to the cytoplasm [166, 167]; however, in GDM, this does not seem to happen. A 
mechanistic study is necessary to address this issue. Finally, an increased transfer of 
maternal insulin to the fetus could explain hyperinsulinemia observed in the fetal 
cord of GDM deliveries. Nonetheless, near 1% maternal insulin crosses the placenta 
[168]. This could hardly cause an increase in fetal insulinemia; however, it may 
contribute. In this regard, the Modified Pedersen hypothesis offers a better explana-
tion: Maternal hyperglycemia passes through the placenta to the fetus; then, from 
the second trimester and onwards, the fetal pancreas responds to hyperglycemia 
with hyperinsulinemia, further favoring glucose disposition in fat stores and the 
anabolic effects of insulin, resulting in macrosomia [169]. This could also explain 
the vascular alterations observed in the GDM offspring; however, further research 
for addressing this issue is needed.

2. Conclusion

GDM is a complex condition that affects both fetus and mother. Its impact on 
the offspring includes vascular and metabolic impairment before birth, predispos-
ing them to early CVD. The real prevalence of GDM worldwide is unknown and 
might go beyond our expectations since it is mostly underdiagnosed. Moreover, 
the differential impact of previously diagnosed diabetes in pregnancy has begun to 
elucidate in the last few decades. On the other hand, the reader is invited to reflect 
that the pathological IR state in pregnancy is not a “black-or-white” matter but a 
continuous spectrum of possible conditions and fetal outcomes that needs to be 
assessed in every pregnancy individually. Including the assessment of HbA1c and 
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lipid profile test in the first trimester, evaluation might improve the diagnosis of 
PGDM and foresee the future GDM development.

Previous IR state and PGDM hinder syncytiotrophoblast invasion in maternal 
vessels and the placenta formation; however, there is still much to research and 
learn from this subject. After development, GDM will continuously expose the pla-
centa to a hypoxic environment that will impair vascular function due to increased 
OS and inflammation. HTG, hyperglycemia, and increased FFA will favor this pro-
oxidant environment, causing ED. The regulation of the vascular tone by EC will 
impair favoring vasoconstriction and further tissular hypoxia. The nutrient transfer 
to the fetus will alter on this condition, exposing it constantly to hyperglycemia. 
Persistent hyperglycemia will damage its blood vessels and force its β-cells to secrete 
insulin extensively, causing metabolic and vascular impairment that will predispose 
it to CVD before its birth.
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