
Chapter 8

Min k-Cut for Asset Selection in Risk-Based Portfolio
Strategies

Saejoon Kim and Soong Kim

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.74455

Abstract

Risk-based portfolio strategies such as the equal-weighted, the minimum variance, and
the risk parity portfolios vie to find portfolios that are well diversified according to their
respective measures. In this chapter, we propose asset-selected risk-based portfolio strat-
egies that aim to reduce the two known weaknesses of these strategies, namely the large
portfolio size and poor diversification with respect to other measures. We formulate this
task as a minimum k-cut problem through which we establish asset selection from all
assets in the investable universe before the risk-based strategy is applied. Empirical results
on the data sets of the S&P 500 and the KOSPI 200 indicate that our asset-selected risk-
based portfolio strategies possess superior properties across extensive performance mea-
sures compared to the baseline risk-based strategies.

Keywords: alternative portfolio management, smart beta strategy, risk-based portfolio,
minimum k-cut, portfolio optimization

1. Introduction

Portfolio selection has been a main research topic in finance for over 60 years, dating back to

the seminal paper by Markowitz [1] which laid the foundation of modern portfolio theory.

Markowitz’s analysis has established the mean–variance-efficient portfolios which achieve

optimal tradeoff between return and risk. Extensive efforts have been made into various

directions since then including the development of the capital asset-pricing model (CAPM)

[2]. Most recent studies on this topic of portfolio selection have focused on alternative or

“smart” beta strategies which exploit risk premia other than the systematic risk, or seek a

better diversification of risk. These are quantitative approaches to portfolio selection and have

played an important role in the field of portfolio management recently. These lie in between an
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active management and the passive management manifested by the perennial market

capitalization-weighted portfolio. A major category in the class of alternative beta strategies is

the risk-based portfolio strategies [3–6] whose main objective is to manage risk more effec-

tively than the market capitalization-weighted portfolio.

Currently, the existing representative risk-based portfolio strategies include the equal-weighted

portfolio in which every asset has an equal weight, the minimum variance portfolio that achieves

the smallest volatility, and the risk parity portfolio of [7, 8] in which every asset in the portfolio is

exposed to equal risk. Clearly, diversification benefits of the three risk-based portfolios do not

perfectly coincide. An important and favorable characteristic of these strategies is that they do

not require the estimation of the expected returns, which is very error-prone, in their formula-

tions. A somewhat comprehensive description of these strategies in terms of risk factors was

presented in [3], and it was shown that the equal-weighted and the risk parity portfolios are

special cases of the constrained minimum variance portfolio in [7]. A general framework of the

quantitative asset allocation models of the three risk-based portfolio strategies has been

presented in [5], and a detailed comparison of the strategies has also been provided in [6].

In this chapter, we propose to improve the characteristic and the performance of the risk-based

portfolio strategies. Firstly, we address the presence of an inherent problem in the exact

implementations of the equal-weighted and the risk parity portfolios that arise from the large

cardinality of the respective portfolios. By construction, each of these portfolios has cardinality

equal to that of the investable universe which can be too large to be implemented exactly in

practice for many investors. To this end, we investigate a preselection of assets from the set of

investable universe prior to implementing the risk-based portfolio strategies in order to reduce

the portfolio cardinality to a more manageable size. This part relates to the improvement in the

“characteristic” of the risk-based strategies.

Secondly, we address the relative weakness of a risk-based strategy with respect to some

diversification measures. For example, the minimum variance portfolio produces the portfolio

with the smallest variance, however, also one that is poorly diversified with respect to weight

and to risk. Similarly, the equal-weighted portfolio produces the portfolio with a perfect

weight diversification but one that also has a relatively high variance. To this end, as in the

first case, we consider a preselection of assets and, in particular, the selection of “diversified”

assets that will endow each risk-based strategy a “better” assets pool from which the portfolios

are constructed. Consequently, the risk-based portfolio strategies defined on our diversified

assets pool will perform superior to those defined on the original investable universe across

different diversification measures and also with respect to other more popular performance

measures such as the return and the Sharpe ratio as well; our results will be shown later. This

part relates to the improvement in the “performance” of the risk-based strategies.

The described improvements are achieved simultaneously by formulating the problem as a

minimum k-cut problem with assets represented as vertices in the graph. As the risk-based

strategies are applied only after the assets have been selected for inclusion in the assets pool,

we call our proposed strategies “asset-selected risk-based portfolio strategies.” Furthermore,

our asset-selected risk-based portfolio strategies require modest additional computational cost

to the respective baseline risk-based ones.
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We tested and compared the risk-based strategies with the proposed asset-selected risk-based

strategies on the data sets of the S&P 500 from 1990 to 2016 and the KOSPI 200 from 2002 to 2016

where the latter is the set of sector-diversified largest 200 companies bymarket capitalization listed

in the Korea Stock Exchange. Therefore, the assets that we refer to in this chapter are all stocks.

The organization of this chapter is as follows. In the next section, we present the formulation of

the three risk-based portfolio strategies along with the associated diversification measures. In

Section 3, we present the minimum k-cut-based asset selection method that forms the basis

from which our contributions of this chapter come. It is followed by the presentation of the

asset-selected risk-based portfolio strategies in Section 4. Extensive empirical results for the

strategies are presented in Section 5, and the conclusion of the chapter is provided in Section 6.

2. Risk-based portfolio strategies

We consider the following three types of risk-based portfolio strategies from which we aim to

make asset selection in an effective fashion: equal-weighted, minimum variance, and risk

parity. We also make comparison with the market capitalization-weighted portfolio. While this

portfolio does not generate competitive returns, it has a nice property of automatic rebalancing

and serves as a common benchmark against which other alternative investment strategies can

assess their performances. We explore these portfolios under the long-only constraint which

will guarantee a unique solution and provide more realistic investing environment for many

investors. We list the four portfolio strategies subsequently where the corresponding abbrevi-

ations are shown inside the parentheses:

1. Market capitalization-weighted portfolio (M)

2. Equal-weighted portfolio (EW)

3. Minimum variance portfolio (MV)

4. Risk parity portfolio (RP)

To formulate the portfolio strategies, let us introduce some notations that will be used through-

out this chapter:

N number of assets in the investable universe

Σ the covariance matrix

σi volatility of asset i

σ ¼ σ1;⋯; σNð Þt

xi weight of asset i in the portfolio

x ¼ x1;⋯; xNð Þt,portfolio weight vector

σ xð Þ portfolio volatility using x as the portfolio weight vector

Therefore, in our notations, σ and x are length—N vectors where t denotes the transpose

operator. Note that σ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

xtΣx
p

. As each portfolio strategy is completely defined by its
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portfolio weight vector, let us describe each strategy by its weight vector. EW is the strategy in

which all assets are given equal weights. The weight vector xEW for EW is given by the

following:

xEW ¼
1

N
1 (1)

where 1 is the all-ones vector. While the strategy looks too simple to generate consistent

positive excess returns, it has shown to outperform M considerably, and no other alternative

investment strategies were consistently better than EW for a wide selection of markets and

holding periods [3, 4]. MV [1] is the strategy in which the portfolio volatility is minimized. The

weight vector xMV for MV is given by the following:

xMV ¼ argmin
x

x
t
Σx

� �

s:t: 1
t
x ¼ 1,

x ≥ 0:

(2)

MV provides an optimal return-risk tradeoff, and in particular, it lies on the leftmost tip of the

efficient frontier curve. MV is perhaps the most stable portfolio among the ones along the

efficient frontier curve as most of the estimation errors come from that of the returns, and this

fact adds to the appeal of MV. RP [7, 8] is the strategy in which the risk associated with each

asset is the same across all assets in the portfolio. Specifically, let the risk contribution of asset i,

RCi, be defined as

RCi ¼ xi �
δσ xð Þ

δxi
¼

x2i σ
2
i þ xi

P

j6¼i xjσij

σ xð Þ
(3)

where δσ xð Þ
δxi

is the marginal risk contribution of asset i, and σij is the covariance of assets i and j.

RP requires that.

RCi ¼ RCj for all i, j:

Note that
P

N

i¼1

RCi ¼ σ xð Þ, and thus the risk contribution from each asset adds up to the portfolio

risk or volatility. We also note that in MV, the marginal risk contributions are all equal for all

assets, that is, δσ xð Þ
δxi

¼ δσ xð Þ
δxj

for all i, j: It is known that RP possesses a unique solution in long-

only investment environment [9] which is our case under study. The weight vector xRP for RP

is given by the following:

xRP ¼ argmin
x

1

2
x
t
Σx�

X

n

i¼1

lnxi

 !

s:t: 1
t
x ¼ 1,

x > 0

(4)
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which is a convex optimization formulation that can be computed efficiently [9]. One can

obtain an equivalent, but computationally less efficient, optimization problem as earlier and

show that RP functions as a tradeoff between EW, which maximizes weight diversification

with perfect disregard for volatility or variance reduction, and MV, which minimizes variance

with perfect disregard for weight diversification [7]. As a consequence, it can be deduced that.

σ xMVð Þ ≤σ xRPð Þ ≤ σ xEWð Þ:

To quantify the amount of diversification attained by the three risk-based portfolio strategies,

in the following, we list the three diversification profile measures [6] for the weight vector x of

a portfolio strategy. They are (1) weight diversification

1

N
PN

i¼1

x2
i

, (5)

(2) volatility reduction

xtMVΣxMV

xtΣx
(6)

and (3) risk diversification

1

N
PN

i¼1

RCi=σ xð Þð Þ2
: (7)

These equations show that the weight vector x for EW, MV, and RP achieves the highest weight

diversification, volatility reduction, and risk diversification, respectively. Note that each of the

measures assumes values between 0 and 1, which represent the lowest and the highest levels of

diversification attained, respectively.

To get an idea of how the three risk-based strategies fare with respect to the three diversifica-

tion profile measures, in Table 1, we list the values of the risk-based portfolio strategy-

diversification profile measure pairs for the S&P 500 and the KOSPI 200 data. The values

shown are the averages of the 105 and 56 periods we used in our experiments for the S&P 500

and the KOSPI 200 data, respectively. The table shows a similar pattern for the two data sets

with respect to the strong and weak profile measures for each risk-based portfolio strategy,

suggesting that this is a characteristic of the strategies. In particular, EW showed a relatively

high-risk diversification but a relatively weak volatility reduction as intuition might suggest.

MV showed a very low-weight diversification and risk diversification. RP showed a relatively

high-weight diversification but relatively low volatility reduction.

Before we further proceed to examine our asset-selected portfolio strategies, let us describe our

experiment setting which is as follows. For the S&P 500 data, the investing time horizon spans

from February 1, 1990, to May 2, 2016, that constitutes a total of 105 quarters, and for the
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KOSPI 200 data, it spans from May 2, 2002, to 2016, for a total of 56 quarters. Both sets of data

were collected on May 2, 2016, and the stock prices have been adjusted for dividends and splits

before experiment.

The daily closing prices of stocks in the formation or the look-back period of a length of

252 days were used to execute the risk-based portfolio strategies whose resulting portfolios

were put into effect the following trading day. There were no missing data in the closing prices

of stocks, and no preprocessing of data was made as is common in the finance literature. This

portfolio is held for one quarter after which portfolio rebalancing is performed. By portfolio

rebalancing, we mean an independent and new execution of the portfolio strategy using data

in the formation period of the most recent 252 days to update or rebalance the portfolio. This

process is iterated throughout the investing time horizon, and specifically, portfolio

rebalancing was made after market close on the last trading day of January, April, July, and

October of each year. To clarify the terms used in this chapter, in Ref. to the date of portfolio

formation (for the first portfolio) or rebalancing (for portfolios thereafter), let us call the

preceding 252 days the “formation period” and the subsequent quarter, typically 58–60 days,

the “holding quarter.” The sequence of consecutive holding quarters is termed the “holding

period” in this chapter which is the entire investing time horizon of our experiment.

3. Min k-cut for asset selection

The risk-based portfolio strategies EW, MV, and RP described in the previous section provide

substantial return–risk tradeoff advantage compared to M [3]. Moreover, the qualitative

feature that is important about these strategies is that each achieves the maximum of the

associated diversification profile measure. Building on top of these risk-based strategies, we

present an improvement in two directions in this chapter. Firstly, we consider the size of the

risk-based portfolio that is completely determined by the strategy that defines it. For exam-

ple, strategies EW and RP, by definition, generate portfolios whose size is equal to that of the

Weight diversification Volatility reduction Risk diversification

S&P 500

EW 1.000 0.229 0.838

MV 0.047 1.000 0.047

RP 0.765 0.329 1.000

KOSPI 200

EW 1.000 0.290 0.873

MV 0.095 1.000 0.095

RP 0.801 0.397 1.000

Table 1. Diversification profile measure summary.

Artificial Intelligence - Emerging Trends and Applications166



assets pool which is the universe of all investable assets, specifically, N. Therefore, to accu-

rately implement EW and RP, the investor has to hold all assets that exist in the investable

universe (normally, in the order of hundreds) in the portfolio. This may be too difficult to

achieve in practice, and furthermore, holding all assets in the investable universe may not be

an investor’s idea of a portfolio. Thus in reality, the implementation of EW and RP is

sometimes vastly approximated by various heuristic approaches created by the investor. In

this chapter, we present a systematic way to reduce and control the size of the portfolios

generated by these strategies. This characteristic of our proposed strategy may be very

beneficial from the practical point of view. Strategy MV, on the other hand, normally gener-

ates a very concentrated set of assets whose size may be larger or, typically, smaller than an

investor’s preferred value. In the case of the former, our contribution will provide a system-

atic way to reduce the portfolio size for this strategy. In the case of the latter, our proposed

strategy may have a slight adverse effect in this respect. As a side note, for the MV strategy,

one may add cardinality constraint to Eq. (2) to match the size of the portfolio with investor’s

investment constraints; however, this will result in a mixed integer quadratic programming

that is proven to be computationally hard.

Secondly, we address the possibility of performance enhancement of the risk-based portfolio

strategies. Specifically, we have witnessed that risk-based strategies show, sometimes serious,

weakness in some of the diversification profile measures. As this phenomenon is attributed to

the disregard for one measure of diversification by a strategy that optimizes a different

measure of diversification, we consider an assets pool that is well diversified on which the

risk-based strategies are executed. For this matter, we present a systematic way to execute

assets selection from the pool of all investable assets such that its effect will be an improved

performance across all diversification profile measures and return-risk tradeoffs.

Relating the above two directions of improvement, in this chapter, we present an assets

selection method that realizes the two improvements simultaneously. To describe our method,

consider the correlation matrix R ¼ rij

� �N

i, j¼1
of the set of all investable assets, where rij ¼

Δ σij

σiσj

� �

is the correlation coefficient between assets i and j. To make the matrix to have nonnegative

entries, let erij¼
Δ
erij for all i, j ¼ 1,⋯, N, and let us consider the new matrix eR ¼ erij

� �N

i, j¼1
. Now,

form the weighted graph G whose adjacency matrix is eR. This complete graph G has the

property that more (less) correlated pair of assets has higher (lower) weighted edge. Therefore,

to obtain a set of k ≪Nð Þ assets that are least correlated with each other, one may partition the

graph G into k-connected subgraphs so that the edges removed to obtain the partition has a

minimum weight and then pick an asset in each partition according to some rule. This

approach to obtaining a set of k assets with the described property complements the main

objective of some of the risk-based portfolios. Specifically, recall that the main objectives of EW

and RP are the maximizations of weight and risk diversifications, respectively, with perfect

disregard for other measures. This suggests the implication of the presence of, possibly highly,

correlated assets in the obtained portfolios. Thus, for these strategies, the preselection of assets

seems beneficial. On the other hand, the main objective of MV is the maximization of volatility

reduction in which lesser correlated assets are selected to some degree. Therefore for this

Min k-Cut for Asset Selection in Risk-Based Portfolio Strategies
http://dx.doi.org/10.5772/intechopen.74455

167



strategy, the benefit of the preselection of assets with the described property seems not to be as

large as in the other cases.

In all cases, by reducing the assets pool from the universe of all investable assets of size N to a

set of k-diversified assets with respect to correlation with other assets, we have effectively

executed a diversified assets selection. Therefore, it remains to describe (1) how to partition the

graph into k-connected subgraphs, satisfying the constraints mentioned above, and (2) how to

pick an asset in each partition.

The first part of this is precisely the minimum k-cut problem of which finding for the exact

solution is well known to be NP-hard [10]. To this end, we use an efficient approximation

algorithm to this problem that finds a minimum k-cut within a factor of 2 1� 1
k

� �
of the optimal

due to [11], which is as follows:

Min k-cut approximation algorithm [11]:

1. For each edge erij , pick a minimum weight cut that separates the end points of erij .

2. Sort these cuts by increasing weight, obtaining the list r01, r
0
2,⋯, r0N N�1ð Þ=2.

3. Greedily, pick cuts from this list until their union is a k-cut; cut r0 i is picked only if it is not

contained in r
0
1∪⋯∪r

0
i�1.

We note that the factor of 2 1� 1
k

� �
of the optimal is still known as the best approximation factor

for tractable algorithms for the minimum k-cut problem [12]. The complexity of this algorithm

is dominated by that of finding the cuts r01, r
0
2,⋯, r0N N�1ð Þ=2 which can efficiently be calculated

through the use of Gomory-Hu tree representation. Specifically, N � 1 max flow computations

suffice to implement the above Min k-Cut Approximation Algorithm. Moreover, using the

Gomory-Hu tree representation, all partitions but one in the k-cut contain exactly one vertex

each with the remaining N � kþ 1 vertices being contained in the last partition. This charac-

teristic of the algorithm when used with Gomory-Hu tree representation almost eliminates the

need for the second part of our diversified assets selection as we need to pick only one vertex in

the only partition that contains more than one vertex. Nevertheless, it remains to describe how

to pick an asset in this last partition with more than one asset. To this end, we define the

affinity of asset i, a ið Þ, as

a ið Þ ¼
X

j 6¼i

erij (8)

from the matrix ~R. Therefore, the affinity of asset i gives a measure of how the asset i is

correlated with all other assets. Eq. (8) shows that the larger the value of a ið Þ, the more

correlated the asset i is with other assets. To pick the one vertex in the last partition with

N � kþ 1 vertices, we picked the vertex i with the highest a ið Þ in the partition as this vertex

would appropriately serve as the “representative” of this partition. To see the effect of using

affinity as the criterion for asset selection, we also tried picking the one vertex with the smallest

a ið Þ in the partition. We labeled the former asset selection method as “Max,” and the latter one

as “Min.” We note that this second part adds negligible computational burden on the overall
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diversified assets selection process as the correlation matrix R and thereby ~R is easily obtained

from the covariance matrix Σ.

In the execution of the overall asset-selected portfolio selection, this part of asset selection is

executed first and then the risk-based portfolio strategy is conducted. We have presented an

“efficient” method to obtain a reduction in the size of the assets pool to any number of choices

in this section. In the next two sections, we empirically demonstrate that this method also

proves to be very “effective,” characterized by superior return–risk tradeoff performances

compared to the baseline risk-based portfolio strategies.

4. Asset-selected risk-based portfolio strategies

In this section, we formally present our proposed asset-selected risk-based portfolio strategies.

As mentioned before, the purpose of our proposed asset selection-based strategy is twofold.

The first is endowing the investor the option to choose the exact size of the portfolio when the

risk-based strategy is either EW or RP. The second purpose is obtaining a superior return-risk

tradeoff through effective subset selection of the assets prior to applying the risk-based portfo-

lio strategy. We empirically demonstrate that our proposed strategies can generate returns that

are sufficiently higher than the pure, or the baseline, risk-based strategies.

Now, to formally describe the strategies, let us denote the baseline risk-based strategy which

does not employ asset selection by S and the asset-selected risk-based strategy by

S_μ

where S is the name of the risk-based portfolio strategy, that is,

S∈ EW;MV;RPf g,

and μ is the name of the asset selection method. For our asset selection-based strategies, we

picked the number of partitions k equal to approximately 25% of the total number of assetsN in

all of the experiments conducted in this chapter. In addition to the two methods of μ described

in the previous section, we also tried selecting the asset with the largest market capitalization in

the last partition with N � kþ 1 assets. We denote this method as “MC,” that is,

μ∈ Max;Min;MCf g:

To illustrate the performance of these risk-based portfolio strategies, the next three figures,

Figures 1–3, exhibit the annualized return versus the annualized volatility plots of the three

strategies, respectively, for the S&P 500 (marked by ∘ ) and the KOSPI 200 (marked by Δ) data.

Figure 1 shows the plots for the EW-based strategies for the two data sets. Any point to the left

of and/or above the point of the baseline strategy can be interpreted as improvement over the

baseline strategy. We observe that EW_Max, EW_Min, and EW_MC all lie above and/or to the

left of EW for both data sets. The defining favorable characteristic of the asset selection-based
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strategies that can be deduced from the performances of EW_Max, EW_Min, and EW_MC is

that the number of assets in the portfolio can be reduced significantly to any number of

investor’s choice, facilitating easier portfolio management while, at the same time, improving

the return–risk performance!

Figure 2 shows the similar plots for the MV-based strategies. As one can expect, since the

baseline strategy achieves the minimum volatility among all strategy types, improvement

cannot be and was not made with respect to annualized volatility from the asset selection-

based strategies. On the other hand, for the KOSPI 200 data set in particular, asset selection-

based strategies were able to produce higher returns than the baseline strategy which may be

attributable to the diversified assets selection. Figure 3 shows the plots for the RP-based

Figure 1. Annualized return versus volatility for EW-based strategies.

Figure 2. Annualized return versus volatility for MV-based strategies.
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strategies, and in particular, the plots resemble those of the EW-based strategies, that is,

RP_Max, RP_Min, and RP_MC all lie above and/or to the left of RP. As RP produces the

portfolio only with equal-risk exposure to all assets, it is clearly benefitted by making diversi-

fied assets selection.

In Table 2, we list the values of the three diversification profile measures of S_ μ, S ∈ f EW,

MV, RP g and μ∈ f Max, Min, MC g for the S&P 500 and the KOSPI 200 data analogous to

Table 1. The diversification profile measures were calculated so that S_ μ, S ∈ f EW, MV, RP g

achieves 1 for weight diversification, volatility reduction, and risk diversification, respectively,

for every μ∈ fMax, Min, MC g. Table 2 shows a similar trend with respect to the stronger and

weaker profile measures for each of the asset-selected risk-based portfolio strategies as in

Table 1. However, a noteworthy finding from Table 2 is that, compared to Table 1, the values

of the profile measures have increased significantly across all profile measures for all portfolio

Figure 3. Annualized return versus volatility for RP-based strategies.

Weight diversification Volatility reduction Risk diversification

S&P 500

EW_Max/Min/MC 1.000 0.349/0.344/0.350 0.835/0.829/0.835

MV_Max/Min/MC 0.131/0.136/0.131 1.000 0.131/0.137/0.131

RP_Max/Min/MC 0.842/0.826/0.843 0.479/0.484/0.480 1.000

KOSPI 200

EW_Max/Min/MC 1.000 0.456/0.440/0.470 0.863/0.857/0.869

MV_Max/Min/MC 0.253/0.256/0.257 1.000 0.253/0.257/0.257

RP_Max/Min/MC 0.859/0.835/0.864 0.603/0.595/0.612 1.000

Table 2. Diversification profile measure summary for asset selection-based strategies.
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strategies. Furthermore, such an improvement is consistent across all asset selection methods

and both data sets. This result serves as good evidence that effective subset selection of assets

prior to applying the risk-based portfolio strategy improves the “quality” of the risk-based

strategies in all of the diversification profile measures considered. In summary, Figures 1–3

and Tables 1 and 2 indicate that our proposed asset-selected risk-based portfolio strategies

provide clear superior return-risk tradeoff and diversification profile measure performances to

the baseline risk-based portfolio strategies.

5. Results

In this section, we present a broader set of empirical results for the asset-selected risk-based

portfolio strategies presented in this chapter. This allows us to better understand the advan-

tages and the disadvantages of the asset-selected portfolio strategies. For this matter, we

examine the following set of performance measures: (A) cumulative return, (B) annual return

average, (C) annual return standard deviation, (D) annualized return, (E) annualized volatility,

(F) Sharpe ratio, (G) beta, (H) portfolio size, (I) maximum drawdown, and (J) one-way turn-

over. In this set of performance measures, all return measures are simple returns except the

“cumulative return (A)” whose value is set to 1 on the first day of the holding period to

explicitly show the increase in the value of the initial asset throughout the entire investing time

horizon. The “portfolio size (H)” is the ratio of the size of the portfolio to that of the investable

universe which is equal toN. We recall that the performances of all strategies considered in this

chapter except the market capitalization-weighted portfolio M reflect survivorship bias of the

same degree as all data pertaining to assets were collected on the same day. For the M strategy,

we used the index to calculate for the performance measures.

5.1. S&P 500 data

Table 3 shows the results of M, EW-based, MV-based, and RP-based strategies for the S&P 500

data. For the EW-based and the RP-based strategies, our asset-selected strategies showed a

clear superior performance in terms of all types of returns considered, a comparable or slightly

worse maximum drawdown performance, and an inferior one-way turnover performance to

the respective performances of the baseline strategies. It seems that this single drawback of

higher one-way turnover for the asset-selected strategies is an intrinsic characteristic of the

strategies that stems from the construction and can be viewed as an implementation cost for

the improved return-risk tradeoff performances gain. For the MV-based strategies, essentially

no improvement was gained through asset selection. This behavior can be attributed to the fact

that the baseline MV portfolio is already a somewhat diversified portfolio with respect to

covariances between assets, so that adding the asset selection phase in portfolio construction

does not help in terms of the performance measures. In fact, for the S&P 500 data, asset

selection only contributed to adverse effect in terms of portfolio size, maximum drawdown,

and one-way turnover as indicated by the table. Therefore, to improve the MV strategy in a

similar order of magnitude as the EW and RP strategies, it seems that different asset selection
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methods need to be explored. We note that in all of the asset-selected risk-based strategies, as

k� 1 assets have already been selected before selecting the last asset using the asset selection

method μ, the choice of the asset selection method seemed not to matter too significantly in

terms of the performances as shown in the table.

Next, in Figure 4, we show the curves representing the cumulative returns over the entire

investing time horizon for the S&P 500 data. For the asset-selected strategies, only the μ ¼Max

A B C D E F G H I J

M 6.282 0.085 0.159 0.073 0.180 0.243 1.000 — 2.200 —

EW 73.249 0.190 0.171 0.178 0.183 0.816 0.977 1.000 12.885 0.019

EW_Max 95.972 0.203 0.180 0.190 0.183 0.881 0.965 0.252 16.067 0.370

EW_Min 94.036 0.202 0.179 0.189 0.182 0.881 0.957 0.252 15.730 0.368

EW_MC 93.786 0.202 0.179 0.189 0.183 0.875 0.965 0.252 15.786 0.366

MV 39.299 0.156 0.136 0.150 0.106 1.141 0.453 0.106 4.064 0.379

MV_Max 40.084 0.158 0.130 0.151 0.117 1.049 0.489 0.068 5.505 0.573

MV_Min 39.043 0.156 0.130 0.150 0.116 1.049 0.483 0.070 5.575 0.562

MV_MC 40.218 0.158 0.130 0.151 0.117 1.050 0.489 0.068 5.531 0.574

RP 57.126 0.176 0.154 0.167 0.159 0.868 0.840 1.000 9.487 0.072

RP_Max 68.401 0.185 0.159 0.175 0.160 0.912 0.836 0.252 11.168 0.398

RP_Min 66.100 0.183 0.157 0.173 0.158 0.913 0.823 0.252 10.798 0.392

RP_MC 67.305 0.184 0.158 0.174 0.160 0.908 0.836 0.252 11.040 0.394

Table 3. Performance summary for S&P 500 data.

Figure 4. Cumulative return curves for S&P 500 data.
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method is shown in the figure as this method was generally the best, albeit marginally, among

the three methods. All curves start at 1, and we used the same color to represent the same type

of risk-based portfolio strategy. Figure 4 shows that EW_Max performs the best, and in

particular, all asset-selected risk-based strategies outperform their respective baseline strate-

gies, sometimes significantly.

5.2. KOSPI 200 data

Table 4 shows the results of M, EW-based, MV-based, and RP-based strategies for the KOSPI

200 data. Similar to Table 3, for the EW-based and the RP-based strategies, our asset-selected

strategies showed a clear superior performance in terms of all types of returns considered, in

this case including a maximum drawdown as well, and an inferior one-way turnover perfor-

mance to the respective performances of the baseline strategies. As in Table 3, the portfolio

sizes are approximately 25% of N which facilitates easy portfolio management in contrast to

the baseline strategies. Even for the MV strategy, our asset-selected strategies produced per-

formance improvement across all measures but the one-way turnover. The magnitude of the

improvement was not as large as the asset-selected strategies of the EWand RP cases; however,

even in this MV case, adding the asset selection phase in portfolio construction facilitated a

more comprehensive assets diversification than that obtainable only through variance minimi-

zation. As before, the choice of the asset selection method seemed not to matter too signifi-

cantly while μ ¼ Max method generally outperformed the others. So for the KOSPI 200 data,

our proposed asset-selected strategy produced a clear superior performance to the baseline

strategy for all strategy types considered in this chapter.

A B C D E F G H I J

M 2.267 0.084 0.230 0.061 0.229 0.113 1.000 — 1.044 —

EW 10.495 0.216 0.299 0.186 0.210 0.718 0.840 1.000 2.232 0.021

EW_Max 18.156 0.256 0.283 0.234 0.215 0.924 0.840 0.254 2.439 0.396

EW_Min 18.216 0.257 0.283 0.235 0.211 0.946 0.815 0.254 2.463 0.400

EW_MC 18.003 0.254 0.278 0.234 0.212 0.933 0.834 0.254 2.358 0.390

MV 8.897 0.191 0.237 0.172 0.141 0.971 0.399 0.201 1.257 0.354

MV_Max 12.553 0.217 0.211 0.202 0.169 0.984 0.488 0.120 1.039 0.503

MV_Min 11.964 0.216 0.224 0.198 0.162 0.999 0.439 0.122 1.437 0.495

MV_MC 12.437 0.215 0.208 0.201 0.169 0.981 0.490 0.121 1.022 0.502

RP 10.585 0.214 0.280 0.187 0.185 0.818 0.729 1.000 1.891 0.079

RP_Max 15.868 0.241 0.255 0.222 0.192 0.972 0.734 0.254 1.863 0.417

RP_Min 15.466 0.239 0.256 0.220 0.185 0.997 0.694 0.254 1.767 0.419

RP_MC 15.723 0.239 0.251 0.222 0.191 0.976 0.734 0.254 1.790 0.409

Table 4. Performance summary for KOSPI 200 data.
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Next, in Figure 5, we show the curves representing the cumulative returns over the entire

investing time horizon for the KOSPI 200 data. As in Figure 4, only the μ ¼ Max method is

shown for the asset-selected strategies as this method was the best among the three methods.

As before, all curves start at 1, and we used the same color to represent the same type of risk-

based portfolio strategy. Figure 5 shows that EW_Max performs the best followed by RP_Max

and then MV_Max. Consequently, all asset-selected risk-based strategies outperform their

respective baseline strategies as in Figure 4. Summing up, Figures 4 and 5 describe that our

proposed strategy’s performance improvement is robust across both data sets which serves as

evidence that diversified assets selection contributes to superior portfolio returns.

6. Conclusions

In this chapter, we considered the three types of risk-based portfolio strategies that have

played an important role recently in the area of smart beta strategies. They are the equal-

weighted, the minimum variance, and the risk parity portfolios. By establishing an efficient

and effective asset selection from assets in the investable universe before the risk-based port-

folio strategies are applied, improvements in the characteristic and in the performance of the

risk-based portfolio strategies were obtained. The improvement in the characteristic part

allows the investor to pick the exact size of the portfolio for the equal-weighted and the risk

parity portfolios. The improvement in the performance part is related to the performance

improvement in all three risk-based portfolio strategies for various performance measures

such as the returns, the Sharpe ratio, and the diversification measures. Empirical results on the

data sets of the S&P 500 and the KOSPI 200 have indicated that our asset-selected risk-based

Figure 5. Cumulative return curves for KOSPI 200 data.
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portfolio strategies show, sometimes significant, advantages across various performance mea-

sures compared to the baseline risk-based strategies.
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