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1. Introduction 

Nitrogen, in a similar way to carbon, has a complex and fragile global cycle. Anthropogenic 
activities from the beginning of the 20th century have interfered with this fine nitrogen-
balance by capturing N2 from the atmosphere for fertiliser production. When stable N from 
the atmosphere enters the forage crop production and stock-raising cycle it returns to the 
environment as waste and in more reactive forms.  

During the combustion of energy crops the fuel-bound N forms greenhouse gases which are 
liberated to the atmosphere, therefore both fertiliser applications and biomass combustion 
can be directly linked to nitrogen related environmental problems. 

Short-rotation plantations irrigated with effluent have both high nitrogen uptake capacity 
[1] and also enhance growth characteristics without the application of fertilisers or 
competition with fresh water usage [2, 3]. Furthermore wastewater irrigation1 reduces the 
cost of wastewater treatment while crops cultivated on the land can provide solution for the 
increasing energy demand of rural areas without destroying existing forestry [2]. 

In order to choose appropriate feedstock and design a biomass-to-energy conversion 
technology both the economical and environmental aspect of a project should be considered. 
Biomass pyrolysis, which is the thermal degradation of the biomass in an inert atmosphere, 
provides an advanced liquid fuel. Pyrolysis liquid (or bio-oil) is the subject of intense 
research and investigations for direct energy applications to provide green electric power 
with highest efficiency [4].  
                                                                 
1Throughout this chapter, the term wastewater will refer either to treated wastewater (effluent) or untreated (raw) 
wastewater. Wastewater irrigation can refer to both flood irrigation, spray irrigation, subsurface drains and other applications. 
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This chapter introduces the use of energy crops into the global nitrogen-cycle by following 
nitrogen from wastewater irrigation via energy conversion (biomass pyrolysis) and finally 
back to soil in a stable form to close the circle (Fig. 1).  

 
Figure 1. General scheme showing the conversion of wastewater irrigated vegetation filters to energy 
and to soil amendment 

2. Wastewater and wastewater treatments 

2.1. Nitrogen in municipal wastewater  

Nitrogen in domestic wastewater is present in both inorganic and organic forms. Organic 
nitrogen from human diet and metabolism is transformed into free ammonia (NH3) and 
ammonium cation (NH4+) by microorganism [5, 6] The NH3 to NH4+ ratio in water is depending 
on temperature and pH. The presence of free NH3 above the concentration of 0.002 mg/L is toxic 
for the ecosystem [7]. Ammonia is also the source of inorganic nitrate and nitrite (NO3-, NO2-) 
nitrogen in wastewater [6]. Inorganic nitrogen is an essential plant nutrient. However, high 
concentrations in water cause eutrophication; an extreme bloom in the population of plants with 
an enhanced growth period followed by the necrosis of the biomass. The degradation of dead 
plant tissues increases oxygen demand of fresh water, therefore, eutrophication leads to oxygen 
scarcity and decreased self-cleaning ability of the biomass system [8]. The presence of nitrate 
and nitrite anions in drinking water is blamed for causing cyanotic conditions like shortness of 
breath, methemoglobinemia and blue-baby syndrome [9, 10]. 

To protect human health and aquatic life the nitrogenous contaminants of wastewater must 
be controlled. Table 1 contains some requirements set up by different governments and 
some typical nitrogen values in different types of wastewater. 
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 Form of nitrogen Concentration 

(mg N/L) 

Source 

Typical nitrogen concentration in grey 

wastewater 
TNa 0.6–74 [11] 

Typical nitrogen concentrations in 
domestic raw wastewater 

TN 20–80 [11] 

Requirement of the European Council 
for urban wastewater treatment 

TN 10 [12] 

Primary standards of the National 

Primary Drinking Water Regulations by 
US EPAb 

Nitrate-N 10 [13] 

Health value of the Australian Drinking 

Water Guidelines 
Nitrate-N 11.3 [14] 

aTN: Total Nitrogen; Sum of organic nitrogen, ammoniacal nitrogen, nitrate-nitrogen and nitrite-nitrogen 
bEPA: Environmental Protection Agency, U.S. 

Table 1. Typical nitrogen values and requirements in water and wastewater 

2.2. Biological wastewater treatment 

The physicochemical removal of nitrogen from wastewater is possible, however, biological 
methods have proved to be more effective and less expensive treatments [15]. 

The biological removal of nitrogen is based on the mixed populations of live bacteria 
naturally present in wastewater which are able to convert nitrogen compounds to other 
chemical forms. The mineralization (consecutive steps of ammonification, nitrification and 
denitrification) of the wastewater-derived organic matter provides oxygen, nitrogen and 
energy for the bacteria to produce new cells [16]. 

The activated sludge formed by these living microorganisms is the core of modern industrial 
wastewater treatment technologies. To ensure the most suitable environmental conditions 
for the microorganisms (e.g. aerobic zone for nitrification and anoxic zone for 
denitrification) several industrial processes have been designed like the Bio-Denitro process, 
modified Ludzack-Ettinger process, Bardenpho process, etc. [15].  

When these conventional wastewater treatment facilities are not available – mostly in 
developing countries – stabilization ponds are the most widely used municipal wastewater 
treatment systems [17]. Even if the climate favours microbial activity these stabilization 
ponds cannot reduce the concentration of nitrogen satisfactorily [18]. 

2.3. Vegetation filters  

If the high cost of the commercial technologies discounts the use of sufficient wastewater 
treatment, the unregulated or poorly regulated water turns to a potential risk factor to 
human health and environment [19, 20]. To eliminate this risk it is crucial to reduce the 
concentration of nitrogen and other pollutants before any effluent reaches the environment.  
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The application of biological filter systems like soil and vegetation filters represents an 
alternative on-site wastewater treatment. While the first pilot tests were carried out by big 
companies to treat cannery effluents, the treatment of municipal water receives more and 
more attention now in developing countries [21, 22]. This type of wastewater management is 
able to reduce the concentration of organic and inorganic contaminants in the water and 
remove 73-97% of the total nitrogen [23]. This low-cost treatment also assimilates nitrogen as 
plant nutrients back into the environment while pathogens from the wastewater cannot 
compete with the natural microbial population of the soil [24, 25].  

3. Nitrogen, the essential plant nutrient 

3.1. Nitrogen in soil  

The role of soil in the biological-cycle is to store and supply nitrogen and other essential 
nutrients for plants. The average amount of organic nitrogen in soil is 3300 kg/ha, however, 
the available nitrogen for plants is less than 1 % of the above volume as vegetations are not 
able to uptake any kind of forms of soil nitrogen [26]. 

3.2. Nitrogen uptake in plants  

The synthesis of plant cell components (e.g. amino acids, nucleic acids, enzymes, 
chlorophyll etc.) is unachievable without nitrogen; nitrogen deficiency in plants causes slow 
growth which can be recognized by the pale green colour of the leaves. Without available 
nitrogen there are no processes in plants [26]. For the formation of new cells, plants uptake 
nitrogen – along with water – in the form of NH4+ or NO3- during their growing period 
(assimilation), or store extra nitrogen (immobilization) [27]. 

Nitrogen is being absorbed from soil during the whole life of the plants but the nitrogen use 
efficiency of plants varies according to the stage of maturity, seasons, environmental 
conditions of the site and the fertility status of the soil as well [26, 28]. The latter factor is 
particularly important in terms of crop yield as nitrogen supply is a main limitation factor to 
plant growth [29].  

3.3. Synthetic nitrogenous fertilisers 

If the nitrogen supply within the soil is not sufficient, land productivity can be improved by 
organic and inorganic (also known as synthetic) macronutrient plant fertilisers. The most 
widely used synthetic fertilisers are ammonia-based products [30]. The source of nitrogen in 
these fertilisers is the atmosphere containing molecular nitrogen in 78 %. The direct reaction 
of molecular nitrogen and molecular hydrogen to NH3 is the base of the widely applied 
Haber-Bosch process [31] which provides more than 140 million tonnes of ammonia to 
farmers around the world every year [32]. 

Modern soil fertility management in the 20th century has made a significant contribution to 
the growth of Earth’s population which has almost quadrupled since 1900s. To sustain this 
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growing population industry produces millions of tons of fertiliser which is responsible for 
more than 1% of the world’s energy consumption. Since hydrocarbon combustion is the 
main energy source of ammonia production, the fertiliser industry is a major contributor to 
greenhouse gas emission [33]. In addition to the energy consumed during production 
transportation of the fertilisers is also contributing to the world’s greenhouse gas emission 
with 37 Tg CO2-eq per year [34]. There is also an estimated 2.5-4.5 Tg N emitted from the 
nitrogen-fertilised soil to the atmosphere each year [35].  

3.4. Nitrogen uptake in effluent-irrigated short-rotation crops 

If the cost or availability of the technology does not make it possible to apply inorganic 
fertilisers, alternative – and possibly more sustainable – nitrogen sources should be 
considered to increase the productivity of agricultural land. 

Similar to inorganic fertilisers, wastewater is a source of supplemental nitrogen. According 
to studies, nitrogen uptake of rain-fed Eucalyptus in New Zealand is in the range of 30-80 
kg/ha/year while the uptake in effluent-irrigated plantations is one magnitude higher [1]. 
During wastewater irrigation, plants uptake nitrogen for their growth and polish the water. 
The absorbed N nutrients are converted to amino acids and stored in wood [36] or 
transferred from roots to shoots for protein synthesis [37]. Research results have also proved 
that plants have enhanced growing characteristics as a result of wastewater, grey water or 
effluent irrigation [38-40]. Table 2 shows the increments in storage and transport amino acid 
concentrations due to wastewater irrigation.  

Free amino acid  
(μg / mg) 

Arginine Asparagine Aspartic 
acid 

Glutamine Glutamic 
acid 

Control willow 0.054 0.141 0.066 0.002 0.048 
Wastewater irrigated 
willow 

0.404 0.177 0.102 0.013 0.103 

Sample: Willow (Salix) from the bioremediation programme of Agri-Food & Biosciences Institute (ABFI, Hillsborough, 
N. Ireland). Trees were in their second year of re-growth after coppicing and plantations were irrigated with farm 
wastewater (TN: 100 mg N/L); Source: Chapter authors 

Table 2. Free amino acid content of willow from wastewater irrigated plot and from a control plot 

3.5. Nitrate-leaching 

Even though vegetation has the potential to store wastewater-derived nitrogen, nutrient 
uptake is not the only limitation factor of the land applications of wastewater.  

Due to the metabolism of microorganisms, nitrogen in soil and wastewater is predominantly 
present in the form of NO3- and NH4+, which are readily available plant nutrients. The 
surface charge of clay minerals in soil is negative which attaches the wastewater derived 
ammonium ion to soil matrix, but ions with negative charge are carried by water [41]. Due 
to heavy rains or improper agricultural activities nitrate nitrogen can leach below the root 
system of plants into the groundwater with a negative effect both on the environment and 
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drinking water quality. Nitrate concentration in groundwater can reach extremely high 
values; one of the reported Indian examples was 1500 mg nitrate in one litre of water, 150 
times higher than the permitted value by the WHO [42]. 

Nitrate is a primary pollutant of groundwater. Although chemical reduction, biological 
denitrification and other in-situ treatments of groundwater are feasible [43], nitrate leaching 
is still the main limitation factor of wastewater irrigation; treatments cannot prevent the 
formation of groundwater contamination or solve the problem of nutrient loss of the soil. 
Without an effective prevention system the only groundwater protection is source control 
which means the limitation of wastewater loading.  

4. Energy from biomass  

4.1. Heating values  

Treating contaminated water by vegetation filters require fast-growing plants, like willow 
[44]. Willow is also a widely cultivated fuelwood for energy applications with an annual 
yield of 9-13 t/ha in Europe [45].  

An important feature of fuelwood and other energy crops is their composition which 
determines their heating (or calorific) value [46, 47]. The higher heating value (HHV) is the 
energy available from the fuel and it is generally given in units of energy per unit of weight 
(cal/g; J/g or Btu/lb). Table 3 contains some typical heating values of fuelwood and other 
solid fuels. Energy crops can displace approximately 0.44 tonnes of oil equivalent when 
converted to electricity [48] and contribute to the reduction of greenhouse gas emission by 
100-2070 Mt CO2-eq/year [49]. 

The quality characteristics of the biomass have a significant effect on the yield of energy 
during a biochemical or thermochemical conversion process [50]. For example high oxygen 
and carbon content favours combustion and increases the heating value [51] while the 
general model of heating values predicts a slight decrease in HHV when nitrogen content of 
biomass increases [52]. 

 HHV (MJ/kg) Source 

Fuelwood   
Softwood (average) 20.0 [53] 

Hardwood (average) 18.8 [53] 
Straw (maize silage) 20.0 [49] 

Charcoals   
Charcoal from rice husk  17–18 [54] 

“High quality” charcoal  28–33 [55] 

Fossil fuels   
General purpose coal 32–42 [56] 

Petrol 45–47 [56] 

Table 3. Heating values of energy crops, charcoals and fossil fuels 
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4.2. Biomass combustion and nitrogen liberation 

Nitrogen content of trees ranges between 0.3 and 1 % [57]. Nitrogen in short-rotation plants 
is generally higher and significant differences can be found between species. Short-rotation 
plants represent a cheap and renewable energy source with high energy potential. The 
combustion of these plants is also a CO2 neutral energy conversion technology, however, 
combustion converts fuel-nitrogen to nitric oxides (NOx = NO + NO2) and nitrous oxide 
(N2O) [58-63] which are contributors to acid rain formation [64]. N2O is also a greenhouse 
gas with a global warming potential (GWP) of 289 where 1 unit represents the global warming 
potential of CO2 over 20 years [65]. The emission of NOx contributes to acidification and it 
also causes eutrophication and ground-level ozone formation [66]. 

Increased nitrogen content in the biomass also means increased emission of NOx during 
combustion [67]. The estimated emission of NOx from biomass combustion was 5-5.9 TgN 
in 2000 [35] and based on the fact that the energy demand and the biomass fuel 
consumption are increasing [68], this NOx emission must be even more significant now and 
need to be decreased drastically. 

To control the harmful effects of combustion plants’ pollutants, organisations like 
Environmental Protection Agency of the United States (US EPA) or the Intergovernmental 
Panel on Climate Change (IPCC) have elaborated their guidelines and emission criteria [69, 
70]. The most common way to fulfil these regulations is the application of flue gas cleaning 
systems (primary reduction with excess air, secondary catalytic reduction, etc) [67] but these 
technologies add cost, particularly in small bioenergy facilities. Another effective way to 
reduce the environment impact of biomass-derived NOx pollution is the application of 
alternative energy conversion technologies with better emission characteristics. 

5. Pyrolysis 

5.1. Biomass conversion to solid, liquid and gas products 

Pyrolysis is a thermochemical process where the biomass (e.g. energy crop) is being 
converted into more effective energy sources. During the pyrolysis process the 
macromolecules and biopolymers of the biomass undergo a thermal degradation in the 
absence of oxygen, which leads to solid, liquid and gaseous products.  

The thermal decomposition and conversion can be interpreted as the independent 
degradation of the three main organic woody biomass compounds, cellulose, hemicellulose 
and lignin [71, 72] which have an average ratio of 45/24/28 wt % in softwood and 45/31/21 
wt % in hardwood, respectively [53]. The few parentage of wood inorganics remains in the 
solid product of pyrolysis while the lignocellulosic compounds undergo thermal 
degradation.  

The biomass conversion at different pyrolysis temperatures can be followed by the 
thermal degradation and the weight loss of the main wood compounds on Fig. 2. The 
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ratio of the gases, vapours and solid products depend on the temperature, residence time 
and heating rate of pyrolysis [73, 74]. Increasing the highest treatment temperature of 
pyrolysis increases the liquid and gas yields and decreases char yield (Fig 3). Due to 
secondary reactions of vapours liquid yield has a maximum which is followed by a 
reduction at higher temperatures and the gas yield increases at the expense of biochar 
yield [73, 75]. 

In terms of nitrogen oxide emission, pyrolysis is a more desirable energy conversion 
technology than combustion; while biomass combustion releases fuel-nitrogen in the form 
of NOx, the inert atmosphere of pyrolysis does not favour to the formation of these or any 
other oxidized pollutants [76]. 

5.2. Pyrolysis liquids (bio-oil) 

Pyrolysis has the ability to generate highly energetic bio-oil which represents most of the 
energy content of wood (Fig. 4) with the additional benefit that it can be easily pumped or 
transported. Another advantage of the bio-oil from energy crops and vegetation filters is 
the lack of jeopardy to the security of food supply, unlike the dangers of sugar-, starch- 
and vegetable oil-based conventional bio-fuels –which conquer valuable agriculture lands 
[77]. 

Bio-oil is still a relatively new energy source and its energy applications are still developing, 
but its combustion in boilers, turbines and engines has been successfully used for heat and 
electricity production [78, 79]. Table 4 contains some typical power output values.  

 

Hot water generation 

Boiler fuelled with pyrolysis oil  
(BTG Biomass Technology Group BV, The Netherlands) 

150 kW  

 

Electric power generation 

Pyrolysis liquid combustion in diesel engine 
(VTT Energy, Finland)  

84 kW  

Pyrolysis liquid combustion in diesel engine  
(Wärtsilä Diesel International, Taiwan)  

1.5 MW  

Pyrolysis liquid combustion in gas turbine 
(University of Rostock, Germany)  

75 kW 

 

Combine heat and power generation (CHP) 

Pyrolysis liquid combustion in a Stirling CHP unit  
(ZSW, Germany)  

10-25 kWth,  
4-9 kWe  

(Source: Czernik, 2004) 

Table 4. Power outputs from bio-oil combustion 
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Sample: 10 mg grinded willow (Salix) pyrolysed in a Mettler TGA/DSC 1 Star System. 
Heating rate: 20 °C/min. Purging gas: He (Source: Chapter authors) 

Figure 2. Typical thermal degradation curves of wood pyrolysis  

 
Sample: 100 g chipped willow (Salix) pyrolysed in a fixed bed reactor;  
Heating rate: 30 °C/min, Purging gas: N2 (Source: Chapter authors) 

Figure 3. Effect of pyrolysis temperature on product distribution 
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Raw material: 100 g chipped willow (Salix) pyrolysed in a fixed bed reactor 
Highest treatment temperature: 460 ºC, Purging gas: N2 ; Source: Chapter authors 

Figure 4. Energy content of raw wood and its solid and liquid pyrolysis products  

5.3. Nitrogen in biochar and in pyrolysis gases 

Biochar and biomass char are the solid co-products of the pyrolysis process. They are mainly 
made of carbon and the ash content of the biomass. Despite of their similarities, historical 
definitions distinguish biochar from biomass char which is also known as charcoal. While the 
latter has been produced and used as fuel for heat for centuries, the former belongs to a new 
concept of soil management and carbon sequestration [80]. Other names like black carbon, 
dark earth (terra preta) or agrichar can be also fined in literature.  

Enrichment of the fuel-bound nitrogen of biomass occurs in the biochar independently from 
the applied pyrolysis technique [81]. Nitrogenous gases (e.g. ammonia, hydrogen 
cyanide and isocyanic acid) are released during pyrolysis, but only at high temperature. The 
ration of these main gaseous nitrogen products depending on both the type of biomass and 
the conditions of the pyrolysis process [76]. Nitrogen-free gases leave the system when 
pyrolysis temperature is increased which results nitrogen depletion in char at high 
temperatures [81]. However, low pyrolysis temperature does not favour the liberation of 
fuel nitrogen therefore most of the nitrogen (approximately 60-75 % at 500 °C) remains 
captured in the char [72, 76, 82].  
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The nitrogen functionalities in biochar are pyrrolic-N, pyridinic-N, quaternary-N and amines 

[83-85] and incubation tests evidenced that these stable nitrogen forms with low 
bioavailability [86]. 

6. Biochar properties 

6.1. Biochar as a fuel 

Due to its high fixed carbon content biochar is a renewable energy source with a heating 
value up to 30-35 MJ/kg [87]. Biomass char has higher energy density and better 
combustibility properties than traditional biomass, and higher reactivity than coal due to its 
oxygen content [88] and its incoherent carbon structure [89]. The combustion of biomass 
char is able to displace traditional fuels, however, the combustion of biochar recycles 
atmospheric CO2 and liberates the char-bond N in the form of NOx without the benefit of 
carbon or nitrogen sequestration. 

According to different estimations biomass pyrolysis with soil applications of the biochar 
has a negative greenhouse gas emission – with a CO2 equivalent ranging from few hundred 
kg up to a few tonnes of CO2eq t-1 dry biomass – with a positive net energy [90-92]. A detailed 
calculation and complete life cycle assessment of biochar can be found in the work of 
Roberts at et al [90]. 

6.2. Biochar as a soil amendment 

The most widely acknowledged benefit of biochar’s soil applications is its long-term carbon 
sequestration potential [90, 93]. Other potentials of biochar is stimulation of N2 fixation and 
the biological transformation of nitrogen in soil [94-96]. 

Biochar is also known for the ability to contribute to soil properties by changing its physical 
and chemical characteristics. The most important physicochemical properties of biochar are 
directly related to the type of the biomass used for char production and the applied 
temperature of pyrolysis [55, 97] therefore biochar contribution to soil quality factors can be 
both positive and negative [98, 99]. By selecting the right feedstock, setting the right 
pyrolysis conditions and elaborately characterising the physicochemical properties, char can 
be applied to soil as an amendment. 

The pyrolysis temperature related structural changes of biochar can be seen on the infrared 
absorption spectra of Fig. 5. Comparing these spectra it can be seen that char gradually loses 
its structural complexity at higher pyrolysis temperatures as wood carbonisation becomes 
more completed. Char samples prepared at 300 °C and 400 °C show dramatic decreases in 
intensity in almost all functional groups; this is the temperature range in which the majority 
of the pyrolysis mass loss of wood occurs due to the degradation of cellulose, hemicellulose 
and lignin. Hemicellulose peak at 1736 cm-1 becomes undetectable in char prepared at 400 °C 
but the O – H (3413 cm-1) and CHn related vibrations (2956, 2924, 2851 cm-1) show dramatic 
decreases in char prepared at higher temperatures (400 – 600 °C) where the thermal 
degradation of cellulose is already completed. Pyrogenic char (prepared at 700 °C or over) 
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has no measured transmittance due to the lack of organic functionalities and the disordered 
carbon structure. 

 
The first strong broad band between 3700 and 3000 cm-1 of dried willow (100 and 200 °C) is the stretching vibrations of 
O – H functional groups. In the region of 2975-2840 cm-1 the unresolved group of medium weak bands is related to C – 
H stretching vibrations of CHn groups. The peak at 1736 cm-1 is assigned to the absorption of free carbonyl groups, 
therefore it is a typical hemicellulose marker [112, 113]. Bands around 1600 and 1500 cm-1 are generally considered as 
lignin markers as this is the region of the skeletal vibrations of aromatic rings [114].  
Sample: 2 mg grinded wood or biochar blended with 200 mg KBr and pressed into pellet 
Spectra: recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer, 4 scans per experiments, resolution: 4 cm-1  

Source: Chapter authors 

Figure 5. Changes in the infrared spectra of biochar obtained at different pyrolysis temperatures 

The functional groups on biochar surface determine the pH and the cation exchange 
capacity and the nutrient retention in soil [100, 101]. The pH also has an impact on the 
mobility of ions and affects soil microbial activity [102]. 

As well as the changes of biochar surface, the increasing pyrolysis treatment temperature 
also increases C content, decreases H and O content and increases the ash content in char 
[103]. These changes in char composition increase hydrophobicity [99] and aromaticity [103]. 
Hydrophobicity and aromaticity play a major role in the future stability of biochar in soil 
[103] and the estimated half-life of char with O/C over 0.2 is 100-1000 year and greater than 
1000 years in case of char when O/C is smaller than 0.2 [104].  

The composition changes in the carbonised char is also accompanied by changes in the 
physical appearance of the biochar; Pyrolysis vapours can develop pores in biochar [105] 
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The increased porosity affects the water-holding capacity of soil and the surface area – a 
shelter for microorganism [97]; bulk density, which affects the pore size distribution of soil 
and the conditions for gas exchange [106]; and total dissolved solids, which give an 
estimation on the amount of the mobile charged ions, migrating from char to soil [80].  

Due to the high specific surface and adsorbent capacity, biochar can increase the water and 
nutrient retention capacity of the soil [107, 108] while a biochar buffer layer in soil can 
reduce both nitrate leaching and gaseous loss of soil nitrogen [107, 109]. Improved nitrogen 
recovery in soil will directly result in increased plant growth. 

Biochar properties are strongly affected by the pyrolysis temperature [97, 110] which makes 
possible to design biochar, remediate specific soil issues and realise a new type of soil 
management [99, 111]. 

7. Conclusions  

Nitrogen always has been the “weakest link” in the food chain and agriculture. Without 
additional nitrogen the present capacity of Earth’s topsoil is not able to satisfy our hunger 
for biomass for food or energy. 

Wastewater is a valuable source of nitrogen but nitrate leaching is harmful for 
groundwaters and results in nutrient lost from the soil. Plants cultivated for wastewater 
treatment can be considered as energy crops and bring land back into economic use.  

To obtain an economically attractive feedstock for energy conversion applications, efforts 
should be made to maximise the utilisation of the sources (land, irrigation water etc) and the 
energy gained from the biomass with a minimum environmental impact. Pyrolysis of 
wastewater irrigated energy crops offers the advantages in both fields, therefore it is an 
excellent candidate to supply green energy for rural areas in developing countries while the 
soil application of biochar can retain and assimilate the wastewater derived nitrogen back 
into the environment.  

 In terms of the nitrogen-cycle, biomass combustion liberates 5-5.9 Tg of NOx-N each 
year into the atmosphere. However, the cultivation of wastewater irrigated energy 
crops and the pyrolysis of the vegetation filters have the potential to reduce the 
emission of NOx-N and other greenhouse gases the following ways: 

 Vegetation filters reduce the concentration of water contaminants and lower nitrogen 
content by 97%. Wastewater can provide nitrogen and nutrients for plants and increase 
biomass yield without the application of inorganic soil fertilisers. 

 Energy crops can uptake wastewater derived nitrogen and double the concentration of 
the storage amino acids. 

 Compare to traditional combustion the pyrolysis of energy crops does not favour the 
formation of NOx.  

 Pyrolysis captures 60-75% of the biomass derived nitrogen in the biochar. The soil 
applications of the biochar provide a long-term nitrogen sequestration and reduce the 
amount of the reactive nitrogen forms which accompany the traditional water treatment 
processes. 
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