

Increased BPV Measured From ABPM

Improves Prediction of Long-term Functional Outcome Compared to Enhanced Casual BP

Karen Appiah¹, Mintu Nath¹, Lisa Manning¹, Will Davison², Sara Mazzucco³, John Potter², Peter Rothwell³, Ronney Panerai^{1, 5}, Victoria Haunton ^{1,4}, Tom Robinson ^{1,5}

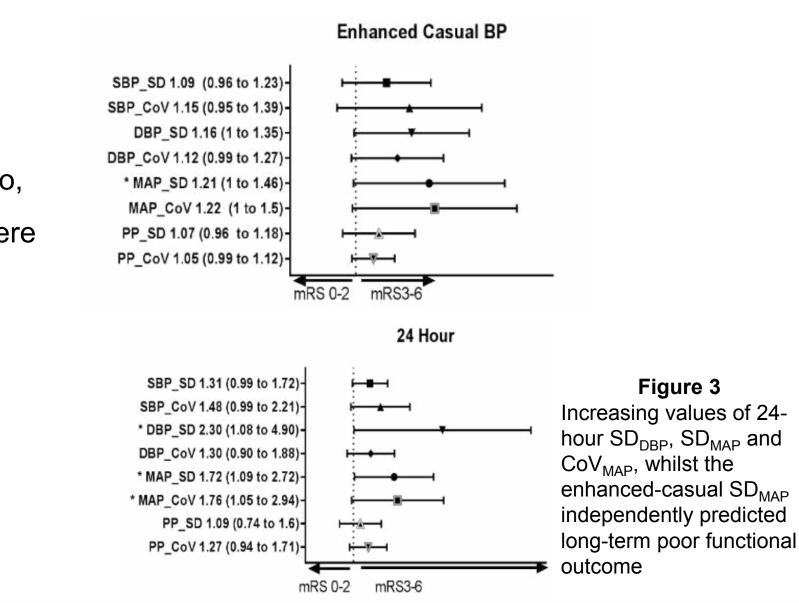
¹ Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; ² Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom; ³ Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, United Kingdom; ⁴ University Hospitals of Leicester, NHS Trust, Leicester Royal Infirmary Square, LE1 5WW, Leicester, UK; ⁵ NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK; email: ka306@le.ac.uk

Introduction

Increased blood pressure variability (BPV) following acute ischaemic stroke (AIS) and transient ischaemic

attack (TIA) may be of prognostic significance. In this multi-centre prospective observational study, we

investigated its prognostic significance by evaluating the associations of BPV derived from enhanced-casual


blood pressure (BP) and 24-hour ambulatory BP monitor (ABPM) with 12-month functional outcome.

Methods	Results
Supine BP assessments completed at	At 12 months, 156 participants were independent;
baseline (≤48hrs) for enhanced-casual BP	dependent (n=36) participants were significantly older
(Figure 1)	[median age 80 vs. 70 yrs, p<0.01], with a higher burden of
24-hour ABPM recordings were also	pre-morbid conditions, pre-morbid and baseline
completed (Figure 2); ≥20 successful readings	dependency, and stroke severity. More data derived from
were needed for an acceptable recording	the ABPM values independently predicted dependency.
BPV defined as standard deviation (SD) and	This was shown for SD _{DBP} , SD _{MAP} and CoV _{MAP} . However,
coefficient of variation (CoV)	only increasing enhanced casual SD _{MAP} independently
Poor functional outcome at 12 months was	predicted dependency (Figure 3).

defined by modified Rankin Scale (mRS) score ≥3

Outcome data were analysed using • multivariable logistic regression; odds ratio, 95% confidence intervals and p-values were reported

Conclusion

Increased BPV following AIS and TIA was associated with an increased risk of 12-month dependency; 24-hour ABPM variability showed stronger prognostic value in comparison with those derived from enhanced-casual BP monitoring.

Figure 2: 24-hour ABPM data recording

