Characteristic features of cellulose nanofibers derived from different tree species with various manufacturing processes

Chunhua Zhang (Haruka Suzuki)¹, Takeshi Fujiwara¹, Hisashi Abe¹, Youki Suzuki¹, Tsutomu Ikeda¹, Masanobu Nojiri¹, Eiji Togawa¹, Satoshi Kubo¹, Reina Tanaka¹, Tomoko Kuribayashi¹, Kyoko Katsumata², Yuji Matsumoto², Kouta Ogura³, Yoko Okahisa⁴, Michiko Shimizu⁴, Takashi Endo⁵, Noriko Hayashi¹

¹Forestry and Forest Products Research Institute; ² Graduate School of Agricultural and Life Sciences, The University of Tokyo; ³Sugino Machine Limited; ⁴Kyoto Institute of Technology; ⁵National Institute of Advanced Industrial Science and Technology

3 × 3 × 200 cm³ $3 \times 3 \times 2$ cm³ \rightarrow 4cm \leftarrow Purpose of the study To investigate whether the wood properties of raw material, Wood board including the pith pulping method and CNF manufacturing process will affect the CNF (cellulose nanofiber) characteristics. Materials $\rightarrow \overset{a}{\overset{c}{\overset{}}{\overset{}}} \leftarrow$ Sakhalin fir (*Abies sachalinensis*) (TD) Japanese white birch (*Betula platyphylla*) (SK) Sample preparation Juvenile wood Mature wood Pith-side Bark-side Wood sticks for \succ Each trunk of the trees was divided into juvenile wood (J) (0~15-20th) Measuring Young's modulus tree ring) and mature wood (M) (the rest). \succ Wood sticks and blocks were cut from a wood board including the pith for analyzing wood properties. \rightarrow

- \succ Both the juvenile and mature woods were chipped, pulped, and then converted into CNFs.
- Kraft pulping (KP) and soda-AQ pulping (AQ) were employed for pulp manufacturing. Waterjet fiber fibrillation technology including oblique collision (OC) and ball collision (BC), TEMPO-catalyzed oxidation (TO), and enzyme biotechnology (En) were used to manufacture CNFs.

Results and Discussion

Specific Young's modulus

Mature > Juvenile

TD > SK

Figure 2. Data of the wood properties

	= TD = SK	■OC ■BC ■ En ■TO		EE EE EE EE I IIII ■ KP ■ AQ	TD ■SK
OC < BC < TO	SK > TD	Waterjet (OC ≒ BC) > En > TO	TD > SK	KP > AQ	TD > SK
	In juvenile wood	In all sample pairs	In waterjet fiber fibrillation	In Sakhalin fir (TD)	In KP pulping

Specific surface area increases as the CNF size becomes small. Figure 3a suggests that fibrillation degree was higher in the order of TEMPO, ball collision, and oblique collision CNFs, and it is supported by the electron micrographs (Figures 7a-a', 7b-b', 7c-c'); Figure 3b shows the CNF derived from Japanese white birch was easier to be fibrillated compared to that from Sakhalin fir in juvenile wood. It appears that the large MFA of Japanese white birch (Figure 2d) resulted in a higher degree of fibrillation.

Thermal resistance was higher in the order of waterjet, enzyme, and TEMPO CNFs (Figure 4a); Sakhalin fir produced CNF of a higher thermal resistance than Japanese white birch in waterjet fibrillation (Figure 4b). High Young's modulus, small MFA and long tracheid of Sakhalin fir (Figures 2a, 2d, 2e) probably contributed to the result.

CNFs derived from Kraft pulps higher crystallinity and had а width than that from wider soda-AQ pulps in Sakhalin fir (Figures 5a, 6a), and it is supported by Figures 7d-d'; Sakhalin fir produced CNF with a higher crystallinity than Japanese white birch in Kraft pulping (Figure 5b).

CNF width was wider in order of Enzyme, oblique collision, ball collision, and TEMPO CNFs (Figure 6b), and it is supported by Figures 7e-e"; CNFs derived from mature wood showed a wider width than that from juvenile wood in Sakhalin fir with soda-AQ pulping and Japanese white birch with Kraft pulping (Figure 6c).

Fibrillation Degree: **BC > OC > En**

Width: **BC < OC < En**

Figure 7. TEM images of uranium acetate negative stained CNFs (a-a", b-b', d-d', e-e"), and SEM images of critical point dried CNFs (c-c'). TD: Sakhalin fir; SK: Japanese white birch; M: Mature wood; J: Juvenile wood; AQ: Soda-AQ pulping; KP: Kraft pulping; BC: Ball collision; OC: Oblique collision; En: Enzyme treatment and wet beads mill.

Conclusion

Tree species, tree age, pulping method, and CNF manufacturing process will all affect the CNF characteristics more or less. CNFs made by different manufacturing methods from different raw materials each have their own unique characteristics. Knowing this fact will help us make the best use of CNFs.

Acknowledgment: This work was supported by a grant from New Energy and Industrial Technology Development Organization (NEDO), Japan.