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Abstract

Received signal strength (RSS)-based localization of people and assets through RFID has
significant benefits for logistics, security and safety. However, the accuracy of RFID local-
ization in wireless sensor networks suffers from unrealistic antenna gain pattern assump-
tion, and the human body has a major effect on the gain pattern of the RFID badge that the
person is wearing. In this book chapter, the gain pattern due to the effect of the human
body is experimentally measured and modeled. A method is presented to estimate the
model parameters from multiple RSS measurements. Two joint orientation and position
estimators, four-dimensional (4D) maximum likelihood estimation (MLE) algorithm and
alternating gain and position estimation (AGAPE) algorithm, are proposed to estimate the
orientation and the position of the badge using RSS measurements from anchor nodes. A
Bayesian lower bound on the mean squared error of the joint estimation is derived and
comparedwith the Cramer-Rao boundwith an isotropic gain pattern. Both theoretical and
experimental results show that the accuracy of position estimates can be improved with
orientation estimates included in the localization system.
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1. Introduction

RFID localization of assets, robots and people has significant benefits for logistics, security and

operations management. For example, GE Healthcare uses the AgileTrac platform [1] to track

the physical location of each asset, via various real-time location system (RTLS) techniques. In

RFID localization, many kinds of radio measurements can be used: time of arrival (TOA), time

difference of arrival (TDOA), angle of arrival (AOA) and received signal strength (RSS) [2].

While RSS is low-cost and available in almost all standard wireless devices, most RSS-based

localization methods make the assumption that the transmitters have isotropic gain patterns.

However, even when the antenna of a transmitter badge is considered as isotropic, people or

objects can affect the RFID badge's radiation, due to the fact that they are absorbing power,

altering the antenna impedance and thus distorting the antenna gain pattern [3]. Previous
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studies have focused on characterizing the effects of a human body’s location and orientation

on RSS measurements [4–7]. In this book chapter, we present models and methods to handle,

and in fact benefit from, the removal of the unrealistic isotropic gain pattern assumption.

Real-world directional gain patterns are problematic for RSS-based localization algorithms. In

RSS-based algorithms, a model relating RSS and path length is assumed [8] or estimated from

training measurements [9]. When the RFID antenna gain pattern is no longer isotropic, the

distances estimated from the log-distance model [10] will not be the same even if the RFID

transmitter is in the middle of two receivers. Model-based localization algorithms will infer

that the transmitter is closer to the receiver that measured larger RSS and will thus produce

estimates that are biased towards directions of high gain in the gain pattern [3].

To deal with the non-isotropic antenna gain pattern and improve model-based RFID localiza-

tion algorithm, we need to build a model for the directionality of a transmitter RFID badge

when it is worn by a person or attached to an object. We present measurements and models for

a transmitter badge worn by a person. However, RFID tags attached to large objects will also

experience non-isotropic gain patterns, and thus extensions to other types of tagged objects are

feasible. As presented in the study of Zhao et al. [3], the variation of RSS was modeled as a

function of people's orientation (i.e., facing direction). The study also proposed (1) a first-order

model to capture most of the variation in the gain pattern as a function of people's orientation,

(2) a method to estimate people's orientation and directionality from ordinary RSS measure-

ments, and (3) an algorithm to estimate the position, orientation and gain pattern of the RFID

badge called alternating gain and position estimation (AGAPE) algorithm. We apply the

AGAPE algorithm together with a 2D maximum likelihood estimation (MLE) algorithm [8]

and 4D MLE algorithm [3] to three sets of experiments performed at different environments:

outdoor, indoor and through-wall. Experimental results show different levels of improvement

from including the first-order gain pattern model at those different environments.

It is not obvious that a non-isotropic gain pattern can benefit RFID localization because

additional model parameters must be estimated together with the RFID locations. In addition

to experimental results, we provide theoretical results that show that the existence of a direc-

tional gain pattern can actually reduce position error for localization algorithms. The Bayesian

Cramer-Rao bound (Bayesian CRB) was derived in Ref. [3] for joint estimation of orientation

and position, while the CRB for position estimation was derived in Ref. [8] with an isotropic

gain pattern assumption. Comparison between the Bayesian CRB [3] and the CRB [8] shows

that joint estimation of orientation and position may outperform (result in lower mean squared

error) estimation of position alone in the isotropic case.

In summary, in this book chapter, we present the latest research progress in the effort to

include RFID antenna gain pattern in model-based RSS localization algorithms. We show that

real-world non-isotropic gain pattern of RFID badge is not a problem to be ignored, but a

means to improve localization accuracy. We present measurements, models, estimation algo-

rithms and estimation lower bounds for RSS-based localization in wireless sensor networks.

Experimental results from three sets of experiments show that position estimates are improved

with the inclusion of orientation estimates from the first-order gain pattern model and the RSS

measurements.
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2. Models

Statistical models based on real-world measurements are important for model-based RSS

localization algorithms. In this section, a measurement-based model is presented for the gain

pattern of a transmitter badge worn by a person. A transmitter in close proximity to a human

body is strongly affected by human tissue, which absorbs power and distorts the gain pattern

of the transmitter [11, 12].

The log-distance model [10] is a general model for the power Pi received at anchor node i from

the transmitter badge t. We include the transmitter gain pattern in the log-distance model, and

the dBm power Pi is modeled as

Pi ¼ P0 � 10np log10
di
d0

� �

þ gðαiÞ þ η (1)

where P0 is the received power in dBm at a reference distance d0, np is the pathloss exponent, di is

the distance between anchor node i and transmitter badge t, αi is the angle between anchor node

i and the badge, gðαiÞ is the gain pattern of the transmitter badge at angle αi, and η is the model

error plus noise. Note that the log-distance model parameters P0 and np can be estimated using

the received RSS measurements between pairs of anchor nodes. Assuming known anchor node

coordinates, these two model parameters can be estimated via linear regression, as in Ref. [8].

Naive model-based localization algorithms use gðαiÞ ¼ 0 for all αi. We propose to include a

nonzero gðαiÞ in Eq. (1). Any real-world gain pattern will depend on the person and the badge

and will look somewhat random; however, we hope to capture the major features of gðαiÞ that

will be largely accurate for the average person.

2.1. Measurements

The recent study in Ref. [3] quantifies the effect of the orientation of a human body on the RSS

measurements using datasets from several experiment campaigns. In their experimental study,

two Crossbow TelosB nodes [13] operating at 2.4GHz were used with one node (node 1)

placed on a stand and the other one (node 2) hung in the middle of a person's chest. The

person wearing node 2 turned 45� every 20 s, with the distance between these two nodes kept

the same. Meanwhile, the RSS at node 1 was recorded on a computer. Node 2 transmitted

about 20 times per second, thus about 400 RSS measurements were recorded for each of the

eight different orientations made by the person. The described experiments were performed by

five people in the student building as well as an empty parking lot at University of Utah. Eight

experiments were performed with various distances between the two nodes from 1.5 to 5.0m.

Therefore, a total of 25,600 measurements were recorded.

Experimental results from two different experiments are shown in Figure 1(a). The minimum

RSS of Experiment 1 (red) and Experiment 2 (blue) are 145� and 180�, respectively, whereas the

maximum RSS are 315�and 0�, respectively. Figure 1(b) shows the mean gain pattern, which is

averaged across all experiments, and indicates that if the person's orientation is 180�, i.e., the

human body blocks the line-of-sight (LOS) path between nodes 1 and 2, the gain pattern is close

RFID Localization in Wireless Sensor Networks
http://dx.doi.org/10.5772/65069

21



to the minimum. In contrast, if the person's orientation is 0�, i.e., facing the node1, then the gain

pattern is about 20dB higher as compared with its lowest point [the red curve in Figure 1(b)].

The average gain pattern in Figure 1(b) closely resembles a cosine function (black curve) with

period 360� and amplitude 10dB. It is worth to note that the variation in RSS as a function of

orientation due to the presence of a person is similar to other experimental studies [7, 14].

2.2. Gain pattern model

Based on the results of the measurements described above, a model for the gain pattern is

proposed as a cosine function with period 360�:

ĝðαÞ ¼ G1 cos ðα� βÞ (2)

where β is the orientation (direction of maximum gain) of the badge, and G1 ≥ 0 is the magnitude

of the cosine function in dB, which we also refer to as the directionality, and G1 ¼ 0 indicates no

directionality, i.e., the RFID badge is an isotropic radiator.

As explained in Ref. [3], the model of Eq. (2) represents the two most important characteristics

observed in the measurements. First, regardless of path length or person wearing the badge,

the gain is higher in the direction the person is facing and lower in the opposite direction. In a

wireless sensor network with several anchor nodes, a person with a badge stands halfway

between node j and node k so that the distance between the badge and these two nodes are the

same, as shown in Figure 2. Given that the person is facing node k, the mean RSS value of node

k would be greater than that of node j.

Second, Eq. (2) is a first-order model for any periodic function. The measurements for this

particular set of data showed a single order captures the vast majority of the angular variation.

Any function with period 2π has a Fourier series representation as the follows:

gðαÞ ¼
1

2π

X∞

k¼�∞

GðkÞej2πkα (3)

Figure 1. The effect of the human body on the RFID antenna gain pattern (RSS from mean). (a) Measured gain patterns

with the error bars in two different experiments. (b) Average over all measured data.
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where GðkÞ are the complex-valued Fourier series components. Note that the model of Eq. (2) is

simply the first harmonic of an arbitrary gain pattern measurement. That is, we include only

the k ¼ 1 term in Eq. (3).

3. Localization algorithms

3.1. Problem statement

This chapter focuses on 2D position estimation using RSS measurements. For a wireless sensor

network which has N anchor nodes and one badge, the position estimation corresponds to the

estimation of the coordinates of a badge: zt ¼ ½xt , yt�
T . Note that one badge is used to simplify

notation in the chapter. However, extension to multiple badges is possible.

If we only use the log-distance model in Ref. [10] to estimate distances between the badge and

anchor nodes, our unknown model parameter θ ¼ zt, since the other model parameters np and

P0 can be determined using pairwise RSS measurements between N anchor nodes.

However, if the gain pattern model is included, two parameters in the gain pattern model must

be estimated from Eq. (2). So, we include these two parameters as nuisance parameters, and

the unknown parameter vector θ becomes:

θ ¼ ½zTt ,β,G1�
T (4)

where β is the orientation of the RFID badge, and G1 is the directionality of the RFID antenna

gain pattern.

3.2. 4D MLE algorithm

To estimate both the badge position and the gain pattern, a baseline algorithm - 4D maximum

likelihood estimation (MLE) algorithm is introduced here as the counterpart of the 2D MLE

algorithm [8] with an isotropic antenna gain pattern assumption.

Figure 2. Gain pattern of a badge in a wireless sensor network.
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As discussed in Section2, the received dBm power Pi is modeled as Eq. (1). Assuming the RSS values

Pi are independent Gaussian with variance σ2 and mean μðθÞ ¼ P0 � 10nplog10
di
d0

� �

þ gðαiÞ, one

can show that the MLE of the badge position is as follows:

θ̂MLE ¼ argmax
θ

X

N�1

i¼0

�

Pi � μðθÞ
�2

(5)

As mentioned in Ref. [3], grid search method was used for finding the MLE solution. For

instance, in the isotropic gain pattern case, the TICC2431 used a 2D grid search method to find

the 2D coordinate. However, when the dimension of the estimation parameter vector

increases, the computation time of a grid search increases exponentially. In addition, the high

computation cost of a multi-dimensional gird search also prevents it from real-time applica-

tions. To better estimate the position and the gain pattern in real-time, we use signal processing

techniques and first-order approximation to develop a different algorithm.

3.3. Gain pattern estimator

Before we propose the algorithm to jointly estimate the position and the gain pattern, we first

introduce a gain pattern estimator, assuming we know the badge position zt. The gain pattern

estimator was first proposed in Ref. [3], and we present their work in this section.

When measuring the gain pattern at discrete values of αi, i ¼ 0, 1⋯N � 1, we require the

discrete Fourier transform (DFT) instead of the Fourier series. However, the same principle

applies—the cosine with period 2π is the first-order approximation of the gain function.

Specifically, for the gain pattern at angle αi, the discrete-time exponential representation is

given by

gðαiÞ ¼
1

N

X

N�1

k¼0

GðkÞejαik ¼
1

N
Gð0Þ þ

2

N

X

M

k¼1

jGðkÞj cos ð∠GðkÞ þ αikÞ (6)

where M ¼ N
2 , and αi ¼

2πi
N , for N equally spaced measurements. In the measurement experi-

ments, we had N ¼ 8.

The mean gain Gð0Þ is simply the average of all of the differences (which we call the model

error) between Pi and the log-distance path loss model, that is, P0 � 10nplog10
di
d0

� �

. Because np

and P0 are determined by linear regression, they tend to make the model error zero mean.

Thus, we assume that Gð0Þ ¼ 0 dB because any mean model error would have been removed

by the linear regression.

Then, the gain pattern from an M order model can be estimated as:

ĝMðαiÞ
¼

2

N

X

M

k¼1

jGðkÞj cos ð∠GðkÞ þ αikÞ (7)
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The first-order model including only the k ¼ 1 term in (7) is

ĝðαiÞ ¼
2

N
jGð1Þj cos ð∠Gð1Þ þ αiÞ (8)

By comparing Eqs. (8) and (2) in Section 2.2, we find the two model parameters β and G1 of the

gain pattern can be calculated as:

β ¼ �∠Gð1Þ

G1 ¼
2

N
jGð1Þj (9)

Thus to estimate the gain pattern, we only need to calculate the DFT term Gð1Þ. In the measure-

ment experiments discussed in Section 2.1, it was possible to measure the gain at equally spaced

angles. In real deployments, anchor nodes will make measurements at a variety of non-equally

spaced angles αi, depending on badge and anchor node positions. The most common way to

estimate the spectral content in a signal using non-equally spaced samples is simply to apply the

DFT to the available samples [15]. Thus, we estimate GðkÞ as:

GðkÞ ¼

XN�1

i¼0

gðαiÞe
�jαik (10)

where gðαiÞ can be calculated from Eq. (1), knowing the received power and the angle between

the badge and anchor nodes.

Note, we need only Gð1Þ for the first-order model of Eq. (2). This calculation of Gð1Þ requires

only N complex multiplies and adds, where N is the number of RSS measurements received

for a badge. This low complexity is important to minimize the computational complexity of the

localization algorithm.

3.4. Alternating gain and position estimator

In the gain pattern estimation, the badge position is assumed known. But in a localization algo-

rithm, the badge position needs to be estimated. For joint position and gain pattern estimation, an

alternating gain and position estimation (AGAPE) algorithm has been developed in Ref. [3] to

efficiently estimate both the position and orientation of a person in awireless sensor network.

As described in Ref. [3], the algorithm includes (1) the initial estimation of the position of the

badge using isotropic gain assumption, (2) calculation of the gain pattern parameters using the

first-order sinusoidal model, (3) re-estimation of the badge position using the RSS-distance

model with the estimated gain pattern. The algorithm iterates until a misfit function is mini-

mized. Note that the proposed AGAPE algorithm is a kind of alternating minimization

method [16]. Figure 3 shows the flowchart of the AGAPE algorithm. For the first step, given

that the gain pattern is isotropic, the naive MLE method is used to estimate the badge position.

The MLE solution can be derived from a conjugate gradient algorithm. However, a 2D grid
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search method was used to avoid the local minima problem here, in the position estimation

step. Note that the 2D MLE grid search can be accomplished quickly in hardware. The output

of the position estimation step is referred to as ẑt.

For the orientation estimation step, given an estimated position, we calculate the gain pattern

gðαiÞ from the RSS-distance model Eq. (1), and then, the DFT term Gð1Þ is calculated from

Eq. (10). The gain pattern model parameters orientation β and directionality G1 are then

estimated from ∠Gð1Þ the phase angle of Gð1Þ and the magnitude of Gð1Þ, respectively, as

given in Eq. (9). Finally, the position of the badge is estimated using the RSS-distance model

with estimated orientation and directionality again. The steps of position and orientation

estimation repeat until the following misfit function is minimized:

Φ ¼

XN

i¼1

ðPi � bPiÞ
2 (11)

where bPi is the RSS estimate at anchor node i, which is calculated from the RSS-distance model

Eq. (1).

4. Estimator lower bounds

One might think that the lower bound of the variance of an estimator will increase due to the

introduction of an additional unknown gain pattern model. In this section, the Bayesian

CRB [17] is derived by including the gain pattern model parameters as nuisance parameters,

as derived in Ref. [3]. The Bayesian CRB is used because the prior knowledge of the gain

directionality G1 is available a priori. In this book chapter, we show that the CRB derived in

Ref. [8] is a special case of the Bayesian CRB derived here. We also show that the lower bound

on the variance of a position estimator is decreased by the introduction of a gain pattern

model.

4.1. Bayesian CRB

To derive the Bayesian CRB, we assume that the orientation of the badge β is uniformly

distributed in the range of 0–2π because the orientation of the person wearing the badge is

arbitrary.

Figure 3. Flowchart of the AGAPE algorithm.
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The gain pattern model expressed in Eq. (2) can be rewritten as:

gðαiÞ ¼ GI cosαi þ GQ sinαi (12)

where GI ¼ G1 cos β, GQ ¼ G1 sin β. Here, we assume the in-phase component GI and quadra-

ture component of GQ are i.i.d. Gaussian distributed with zero means and variance σ2G. Com-

ponents GI and GQ are affected by many different factors, such as the person’s shape and size,

and also the badge location on the human body. Thus, their distributions are close to Gaussian,

by a central limit argument. This assumption is equivalent to a Rayleigh distribution [18]

assumption for G1, which matches the prior knowledge of G1: (1) G1 must have a nonnegative

value; (2) G1 is unlikely to be exactly zero and also unlikely to have very large values, since the

gain pattern is related to human size.

The Bayesian CRB is also called the Van Trees bound or the MSE bound [17], it is given by:

varðθÞ ≥ ðID þ IPÞ
�1 (13)

where θ ¼ ½zTt ,GI ,GQ�
T , ID represents the Fisher information matrix, and IP represents the prior

information matrix [17]. Note that the prior information only contains information of the gain

pattern, no prior information about the badge position is included. The detailed derivation of

the Bayesian CRB is presented in Ref. [3], we compare it with the CRB derived with an

isotropic gain pattern assumption next.

4.2. Comparison with CRB

For an estimator with deterministic parameters, a CRB is often used. With an isotropic gain

pattern assumption, a CRB for position estimation using RSS is derived in Ref. [8]. When the

gain pattern term in the RSS-distance model approaches zero, that is, gðαiÞ ¼ 0, the Bayesian

CRB should be the same as the CRB derived in Ref. [8]. We show this next.

With the additional parameters in the gain pattern model, the Bayesian CRB not only

depends on radio channel parameters, but also depends on gain pattern parameter σ2G. Once

Figure 4. Lower bounds. (a) Lower bound with σ2G ¼ 0:0001 (minimum value: 0.27, maximum value: 0.38). (b) Lower

bound with σ2G ¼ 1 (minimum value: 0.05, maximum value: 0.36).
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these model parameters are calculated, the Bayesian CRB can be calculated for an L m by L

m square area with four anchor nodes located at four corners. If we use the same radio

channel parameters as [8] and two different σ
2
G values: σ2G ¼ 0:0001 and σ

2
G ¼ 1, the two

Bayesian CRBs are shown in Figure 4. For very small σ2G, e.g., σ
2
G ¼ 0:0001, the Bayesian

CRB is shown in Figure 4(a), which is identical to the CRB derived in Ref. [8]. For σ
2
G ¼ 1,

the Bayesian CRB is shown in Figure 4(b). To obtain a lower bound for the overall area, we

introduce the average RMSE bound, which is defined as the average value of the square root

of the Bayesian CRB bounds over the area. The average RMSE bound for σ
2
G ¼ 1 is 0.29m,

which is lower than the 0.30m average RMSE bound with a gain pattern close to isotropic,

e.g., σ2G ¼ 0:0001.

5. Experiments and results

5.1. Experiment description

We present experimental datasets from three experiment campaigns in this book chapter.

These experiments were performed at outdoor, indoor and through-wall scenarios, which

cover a variety of multipath effects and environmental noise conditions.

• Experiment 1: The first experiment was performed in a 6.4m by 6.4m area outside the

Merrill Engineering Building of the University of Utah. The area is surrounded by 28

TelosB nodes [13] deployed at known locations on stands at 1m height, near trees and

3m away from the building wall. A person worn a TelosB node in the middle of his chest

and walked around a marked path at a constant speed of about 0.5m/s. This outdoor

experiment dataset was first reported in Ref. [3], and details can be found there.

• Experiment 2: The second experiment was an indoor experiment performed inside the

Warnock Engineering Building of the University of Utah. A 6.1m by 6.1m area was

surrounded by 20 TelosB nodes with an interdistance of 0.91m between each two anchor

nodes. A person wearing a TelosB node walked clockwise twice around a 2.7m by 2.7m

square, as shown as the purple line in Figure 9. The experiment was performed in the

building lounge area, during which students occasionally walked outside the peripheral

area of the sensor network. This experiment is first reported in this book chapter.

• Experiment 3: The third experiment was a through-wall experiment, in which 34 TelosB

nodes were deployed outside the living room of a residential house, as shown in Figure 5

(b). A person wearing a transmitter walked four times around a 3.6m by 3.6m square in

the living room. The experiment was performed in a dynamic environment, where wind

caused tree branches and leaves to sway. This experiment dataset is first reported in

Ref. [19].

5.2. Experiment test bed and procedure

All three experiments use the same radio hardware, network protocol and follow the same

procedure. TelosB nodes were used as network anchor nodes and also mobile node. In all
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experiments, anchor nodes were deployed at fixed locations, and one mobile node (transmitter

badge) was worn by a person in the middle of their chest. All TelosB nodes were programmed

with TinyOS program Spin [21] SPAN Lab. Spin protocol, and a base station connected to a

laptop was used to collect RSS measurements received by all the anchor nodes.

Before people started walking in the area, a calibration was performed with no people in the

experimental area. Since the locations of the anchor nodes are known, we use the measured

RSS and the link length to estimate the np and P0 parameters of the log-distance model. During

the experiment, a person wearing the radio transmitter on their chest walked around a marked

path a few times. A metronome and a metered path were used to keep the walking speed

constant so that the position of the person at any particular time was known. The actual

positions and orientations of the badge during these experiments are both known, so we can

compare them with the position and orientation estimates from the AGAPE algorithm.

5.3. Experimental results

A unique feature of modeling RFID antenna gain pattern is that it enables estimating the

orientation of the person, in addition to the person's location. We show the orientation estima-

tion results from the AGAPE algorithm using data from Experiment 1, which was first

reported in Ref. [3]. The estimated orientations are shown in Figure 6, together with the actual

walking directions. The orientation estimates generally agree well with the actual orientations.

As mentioned in Ref. [3], “the deviations from the actual orientations are generally less than

30�. However, sometimes when the person is turning, the bias is larger than 30�. This may be

due to the fact that the algorithm uses RSS measurements from 28 anchor nodes to estimate the

person’s orientations, and at the turning points, RSS measurements may be a mix of those

Figure 5. Experiment layout of Experiment 3 (through-wall).
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recorded before, after and during turning.” The median error from the AGAPE algorithm is

about 10�, and more than 90% errors are below 30�. The 4D MLE algorithm can also estimate

orientation, but it takes much more computing time. As mentioned in Ref. [3], the 4D MLE

implementation uses “10 times more than the AGAPE algorithm in the Python implementa-

tion, and the estimates are not more accurate than those from AGAPE.” In addition to the

orientation of the badge, another model parameter G1 is also estimated. For Experiment 1, G1

has an averaged value of 12, which suggests that “the directionality of the gain of the trans-

mitter badge worn by this particular person in this particular environment is about 12 dB.“This

value is consistent with our experiments in the antenna gain pattern modeling discussed in

Section 2.

For the performance of position estimation, the CDF of the position estimation error from

Experiment 1 is shown in Figure 7. We see that the median estimation error is about 0.61m,

and the 90th percentile estimation error is 1.22m. However, the 2D MLE method has a median

error of 2.60m, which is about 4.3 times larger than that from AGAPE. From the comparison of

the CDFs, we see that significant improvement is made if we include the orientation estimate

in the localization.

In Experiment 1, a wireless sensor network with 28 anchor nodes is used to locate a badge in a

6.4m by 6.4m square area. However, not so many anchor nodes may be available in some

applications. The following tests are performed using RSS measurements from a fraction of all

anchor nodes to investigate the effect of node number on the localization accuracy.

As mentioned in Ref. [3], “in the first test—Test 1, we use RSS measurements from different

numbers of equally spaced anchor nodes to locate the badge. For example, we first choose the

RSS measurements from four anchor nodes at each corner of the square area. As expected, the

Figure 6. Mobile's actual orientations (∎) and orientation estimates (○) (time for each sample is about 0.4 s).
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localization is not very accurate, the RMSE of the position estimate is 3.36m, and the RMSE of

the orientation estimate is 40�. Next, we use the RSS measurements from those anchor nodes

whose ID numbers are multiples of 1, 2, 3 and 4 (since the anchor nodes are placed in a

numerically increasing order around the experimental area, these anchor nodes are equally

spaced). The RMSEs of the position and orientation estimates are shown as dots in Figure 8(a)

and (b), respectively. We see that as the node number increases, the RMSEs of position and

orientation estimates both decrease. When the node number increases to fourteen, the RMSE of

the position estimate decreases to 1.30m, and the RMSE of the orientation estimate decreases

to 18�. Further increase in anchor nodes will continue to decrease the RMSEs, however, there

are diminishing returns.”

Figure 7. CDFs of position estimation errors from AGAPE and 2D MLE.

Figure 8. Effect of node number on (a) position estimation error and (b) orientation estimation error. (Test 1 uses equally

spaced anchor nodes and Test 2 uses randomly chosen anchor nodes).
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“In practical scenarios, anchor nodes may not be equally spaced. Thus, in Test 2, we use RSS

measurements from randomly chosen anchor nodes. For example, we randomly choose four

anchor nodes and run AGAPE using the RSS measurements from these nodes. We repeat the

above procedure 100 times, and each time calculate the RMSEs of the position and orienta-

tion estimates. Similarly, we randomly choose seven, ten, fourteen and twenty anchor nodes.

The average RMSEs are shown as squares, and the RMSE standard deviations are shown as

error bars in Figure 8. From Figure 8(b), we see that the average orientation RMSEs in Test 2

are all larger than the RMSEs in Test 1. For position RMSEs shown in Figure 8(a), the average

RMSEs in Test 2 are generally larger than the RMSEs in Test 1, except for the extreme case

when the number of anchor nodes is four. Thus, the AGAPE algorithm generally performs

better if the anchor nodes are equally spaced. However, the AGAPE algorithm is not very

sensitive to the effect of anchor nodes being non-equally spaced. In fact, the differences

between the position RMSEs in Test 1 and the average position RMSEs in Test 2 are always

less than 0.4m. Finally, we compare the performance of the naive MLE 2D method with the

AGAPE algorithm using randomly chosen nodes. As shown in Figure 8(a), the MLE 2D

method is not very sensitive to the number of anchor nodes. However, the average position

RMSEs from the MLE 2D method are always larger than those from the AGAPE algorithm

for different numbers of anchor nodes.”

For Experiment 1, we see that the AGAPE algorithm can estimate both the orientation and

location of a person wearing an RFID badge with good accuracy for an outdoor environment.

However, its performance degrades at the indoor and through-wall experiments, i.e., in Exper-

iments 2 and 3. The position estimates from AGAPE and 2D MLE at a particular time in

Experiment 2 are shown in Figure 9, together with the likelihood function of MLE. We see the

MLE location estimate is biased towards the walking direction of the person, as it does not

include the human body effect on the transmitter gain pattern in its model. We also see that the

AGAPE algorithm is able to estimate both position and orientation of the person, and the

position estimate is closer to the actual location than the 2D MLE estimate. However, AGAPE

is not as accurate as in the outdoor experiments, because the modeling error in the first-order

gain pattern model increases at an indoor environment due to multipath effects.

For the through-wall experiment Experiment 3, we see that due to the attenuation of walls, the

path-loss model parameter np ¼ 3:22, which is much larger than those from the first two

experiments. The AGAPE algorithm can still estimate both the position and orientation of the

person with reasonable accuracy, but there are several position estimate errors that are larger

than 4m (not shown in the figure). This is due to the ambiguity problem of AGAPE since

AGAPE has orientation β and gain pattern parameter G1 to estimate, in addition to position

estimate. That is, AGAPE can converge to an incorrect position with an incorrect estimate of

orientation due to the noisy RSS measurements and the modeling error.

We compare the root mean squared error (RMSE) of the position estimates for the above three

sets of experiments. The RMSEs from the AGAPE, 2D MLE and 4D MLE algorithms are listed

in Table 1. We see that for Experiment 1, the RMSE from the AGAPE algorithm is 0.87m,

which is similar to the 4D MLE algorithm. However, the MLE 4D algorithm uses grid search

method and is not a real-time algorithm due to its computational complexity. The RMSE from
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the 2D MLE algorithm is 2.64m. So for Experiment 1, the RMSE from AGAPE is reduced by

67.2% compared to the 2D MLE algorithm. For Experiment 2, the 2D MLE has an RMSE of

1.86m, while the RMSEs from 4D MLE and the AGAPE are 1.65 and 1.69m, with 11% and 9%

improvement, respectively. Finally, for Experiment 3, AGAPE does not have much improve-

ment compared to MLE. Both MLE and AGAPE have RMSEs of about 2m.

From the above comparison, we see that the 4D MLE and AGAPE algorithms are significantly

more accurate than the 2DMLE algorithm for outdoor environments. The 4DMLE takes much

more time than the AGAPE algorithm, but both algorithms can estimate the position and

orientation of a person wearing an RFID badge in front of her chest. The benefit from the

modeled directional gain pattern reduces at indoor and through-wall environments, since the

first-order gain pattern model becomes much noisier due to the increased multipath effects.

Experiment Model parameters RMSE from MLE

(2D) in meter

RMSE from MLE

(4D) in meter

RMSE from

AGAPE in meter

np P0

Experiment 1 1.67 48.6 2.64 0.98 1.03

Experiment 2 2.28 19.8 1.86 1.65 1.69

Experiment 3 3.22 30.5 2.10 2.02 2.05

Table 1. Experimental localization results: RMSEs from MLE (2D), MLE (4D) and AGAPE.

Figure 9. MLE likelihood and position estimates from 2DMLE and AGAPE algorithms in Experiment 2. Marked walking

path (purple line); actual person position (�); 2D MLE position estimate (◊); AGAPE position estimate (▪) and AGAPE

orientation estimate (!).
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The AGAPE and 4D MLE algorithms may suffer from the ambiguity problem, that is, they

may converge to a wrong position with a wrong orientation estimate. This ambiguity problem

is observed when a person wearing an RFID badge presents in close proximity to walls. This

problem may be resolved using orientation estimates from inertial measurement unit (IMU).

However, RF device-free localization [19, 20] may provide a simple way to solve the ambiguity

issue without adding more sensing modalities.

6. Conclusion

In this book chapter, we present measurements and models of active RFID antenna gain

pattern due to the human body effect. We find that a wireless sensor network-based RFID

localization system can actually benefit from the non-isotropic gain pattern due to the attenu-

ation and reflection of the human body. We present three estimation methods of RFID locali-

zation using received signal strength (RSS) measurements from a wireless sensor network: 2D

maximum likelihood estimator (MLE), 4D maximum likelihood estimator (MLE) and alternat-

ing gain and position estimator (AGAPE). The 4D MLE and AGAPE algorithms can both

estimate user orientation in addition to position, with the first-order gain pattern model and

the assumption that the user is wearing the RFID badge in front of her chest. However, the

AGAPE algorithm significantly outperforms the 4D MLE algorithm in computational time

using discrete Fourier transform (DFT) and first-order approximation. We also derive theoret-

ical estimation lower bound for joint orientation and position estimation problem. The Bayes-

ian Cramer-Rao bound (CRB) shows that the lower bound on the variance of a position

estimator decreases with the inclusion of a gain pattern model to the RSS log-distance model.

Finally, we present three sets of experiments performed at outdoor, indoor and through-wall

environments. The experimental results show that the 4D MLE and AGAPE algorithms

outperform the 2D MLE algorithm in localization accuracy in all datasets.
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