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Abstract

Automation of greenhouse environment using simple timer-based actuators or 
by means of conventional control algorithms that require feedbacks from offline 
sensors for switching devices are not efficient solutions in large-scale modern 
greenhouses. Wireless instruments that are integrated with artificial intelligence 
(AI) algorithms and knowledge-based decision support systems have attracted 
growers’ attention due to their implementation flexibility, contribution to energy 
reduction, and yield predictability. Sustainable production of fruits and vegetables 
under greenhouse environments with reduced energy inputs entails proper inte-
gration of the existing climate control systems with IoT automation in order to 
incorporate real-time data transfer from multiple sensors into AI algorithms and 
crop growth models using cloud-based streaming systems. This chapter provides an 
overview of such an automation workflow in greenhouse environments by means of 
distributed wireless nodes that are custom-designed based on the powerful dual-
core 32-bit microcontroller with LoRa modulation at 868 MHz. Sample results from 
commercial and research greenhouse experiments with the IoT hardware and soft-
ware have been provided to show connection stability, robustness, and reliability. 
The presented setup allows deployment of AI on embedded hardware units such as 
CPUs and GPUs, or on cloud-based streaming systems that collect precise measure-
ments from multiple sensors in different locations inside greenhouse environments.
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1. Introduction

Control and automation of microclimate and fertigation inside greenhouses 
have contributed to improving the sustainability of closed-field environment agri-
culture by reducing water, fertilizer, and energy demand, while at the same time 
increasing yield and profit [1]. The trend of environmental monitoring in modern 
farming is towards shifting from offline systems to wireless and cloud-based data 
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collection architecture [2]. Advances in sensing technology have made possible 
the best quality of greenhouse production with the capability of yield prediction. 
Digital technology such as the Internet-of-Things (IoT) offers parallel solutions 
for automation engineers, which can be customized specifically for greenhouse 
applications. Wireless sensors and IoT enabled devices are used for real-time 
monitoring and control of the greenhouse environment through a secure internet 
connections on any mobile devices [3]. With multiple sensors that transmit data to 
a central computer installed with knowledge-based automation software, growers 
can monitor all internal and external data and apply any required changes to the 
environment in real-time. For example, a fertigation control system that monitors 
certain aspects of the irrigation, such as flow rate, electrical conductivity (EC), 
and pH of the fertigation solution, as well as the external variables such as solar 
radiation and external climate conditions can take advantage of the collected data 
and incorporate them into models or artificial intelligence algorithms in a way 
that particular control commands, such as triggering specific pumps or switch-
ing other processes, are sent to alter the greenhouse environment. In this aspect, 
the flexibility of the monitoring system and the knowledge behind the control 
algorithms are the key factors for an effective automation system. Figure 1 shows a 
general architecture of wireless communication for IoT monitoring and control of 
multiple greenhouses. The main justifications for the deployment of such infra-
structure can be summarized as (i) to provide real-time monitoring of the changes 
and variations to ensure optimal growth environment and minimize the risk of 
equipment malfunction, (ii) to share data with cloud-based decision support 
systems, and (iii) to send instant responses to the wireless actuators for reducing 
input costs and increasing yield and quality.

Research and development for adopting wireless communication technology in 
monitoring and control of greenhouse environments began in the late 1990s and 
early 2000s. One of the earliest reports of WSN application in greenhouse environ-
ment monitoring can be found in the work of [4]. The compact size, reliability, and 
cost-effectiveness of WSN modules, as well as flexibility for developing custom 
applications beside easy installation, have made this technology gain importance 
and popularity for Closed-Field Environment Agriculture (CFEA). Various remote 
systems, both prototype and commercial, have been designed for investigating 
functionalities and limitations inside greenhouses.

Figure 1. 
Schematic diagram of wireless communication between greenhouse sensor nodes and cloud storage. Image by 
courtesy of Adaptive AgroTech.
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An effective IoT-based solution should incorporate the use of wireless sensors 
and mobile applications for displaying, processing, and analyzing data from remote 
locations using cloud services which together provide new insights and recommen-
dations for better decision-making. Evaluation of greenhouse environments prior 
to the actual cultivation is also of interest for many growers. IoT-based monitoring 
systems have been used for evaluating and adjusting microclimate parameters with 
LoRa sensors which are custom-designed to withstand hot and humid condition, 
allowing the system to continuously operate on solar-charged battery in remote 
areas where connections stability is of concern [2, 3]. An example of a modular 
LoRaWAN sensor node with external solar-charged battery and aviation connec-
tor cables with plug-and-sense capability is shown in Figure 2. These devices are 
customized specifically to operate in harsh agricultural condition and resist high 
humidity, solar radiation, insects, and bugs. The quality of network connectivity 
and stability in continuous data collection with 5 seconds intervals were tested in 
extreme conditions a proof of reliability for use in digital agriculture applications. 
A sample of air temperature dataset that was collected from a heat control chamber 
experiment using these devices are plotted in Figure 3 to show the resolution and 
stability of the wireless transfer.

It should be noted that in most studies that are related to wireless monitoring 
of greenhouses, raw data are first collected via a wireless sensor network-based 
system and are processed afterward. A drawback of this approach is that because 
the collected data is not processed in real-time, they cannot immediately determine 
the temporal and spatial variations in the environmental parameters, as well as 

Figure 2. 
A LoRaWAN wireless sensor node with an external solar-charged battery and different sensor shields used in 
real-time monitoring of greenhouse microclimate parameters. Images by courtesy of Adaptive AgroTech.

Figure 3. 
An example of IoT monitoring of air temperature using ADP-AgroTech 868Mhz LoRa sensor located inside a 
metal heat control chamber that was isolated in a concrete basement for connectivity test. The gateway receiver 
was located inside another building, approximately 50 m away from the transmitter. Data were collected every 
5 seconds.
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their deviation from optimal conditions. In addition, the available commercial 
LoRaWAN and IoT sensors for use in agriculture and greenhouses environments are 
expensive and range between 1000 and 5000 USD at minimum order of 5 units. The 
presented chapter is an effort to respond to these problems, by presenting an over-
view of the components of an affordable multichannel wireless sensor node (WSN) 
with LoRa modulation at 868 MHz that can be interfaced with onboard computers 
such as Raspberry Pi for implementation of artificial intelligence (AI) algorithms in 
a way that they can perceive the greenhouse environment, make decisions, and take 
proper actions. These devices are custom-designed to withstand harsh greenhouse 
condition in order to provide real-time monitoring and control of crop growth 
variables such as microclimate parameters, light condition, soil temperature, soil 
moisture, and leaf wetness.

2. IoT sensing and data sharing in greenhouse production

Enabling commercial greenhouses with continuous sensing, communication 
between devices, and data sharing with the greenhouse management system is 
essential for disease prevention [5]. Some of the greenhouse diseases such as mil-
dew fungi can cause significant loss of yield up to 50% [6]. For example, in hot and 
humid tropical climate conditions, extensive rainfall, fog, and high air temperature 
contribute to exacerbating the development of fungi in the leaves [7]. IoT-based 
sensor data fusion integrated with mathematical models provides growers with the 
opportunity to have a prediction of the situation and apply the right actions before 
an outbreak. The main elements of an IoT-based data acquisition and data shar-
ing system with multiple sensor nodes and repeaters are shown in Figure 4. This 
framework provides growers with an evaluation of microclimate parameters with 
respect to different greenhouse designs and covering materials prior to the actual 
cultivation. The physical layer, software, and sensors layer in this scheme are linked 
wirelessly through standard communication protocols for transmitting data to a 
central base station for real-time or offline processing. This approach is required 
to exhibit precision accuracy, connection reliability within the sensing coverage, 
and low power consumption in order to be considered efficient for continuous 
monitoring of greenhouse in all growing seasons. Other than the specifications and 
characteristics of the sensors and communication algorithms that influence these 
functional properties, the physical internal and external condition of the green-
house environment can also affect such a wireless monitoring framework.

2.1 Sensor probes

A sensor probe refers to any instrument or device that measures some physical 
or chemical characteristics of the environment and sends the results as an electrical 

Figure 4. 
Major components of an IoT-based data acquisition and monitoring system for greenhouse environment [2].
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signal to be received and interpreted by the main automation computer for decision 
making and control purposes. For example, a pH sensor that continuously measures 
the pH of the irrigation water will trigger an alarm and maintain optimum pH level 
if it is too high or too low, eliminating the need for a grower to manually run pH 
tests and pH control. Some of the essential parameters to measure in a greenhouse 
environment include microclimate (i.e., air temperature, relative humidity, and 
vapor pressure deficit), soil moisture, soil temperature, and light level (or solar 
radiation) [6, 8–10]. Measurements from these sensors can indicate the presence of 
mildew disease or condensation. Figure 5 shows some of the most widely used sen-
sors in greenhouse production. For example, concerning the microclimate param-
eters, the high precision BlueDot BME280 + TSL2591 is a tiny integrated digital and 
cost-efficient sensor with great accuracy and range that provides a flexible solution. 
The BME280 is a combined digital humidity, pressure, and temperature sensor 
based on proven sensing principles. This sensor module is housed in an extremely 
compact metal-lid LGA package with a footprint of only 2.5 × 2.5 mm2 with a height 
of 0.93 mm. Its small dimensions and its low power consumption allow the imple-
mentation in battery-driven sensor nodes inside greenhouses and can achieve high 
performance and accurate measurement. The BME280 also provides an extremely 
fast response time for fast context awareness applications and high overall accuracy 
over a wide temperature range. The pressure sensor is an absolute barometric 
pressure sensor with extremely high accuracy and resolution and drastically low 
noise. The integrated temperature sensor has been optimized for low noise and high 
resolution. Its output is used for temperature compensation of the pressure and 
humidity sensors and can also be used for estimation of the ambient temperature.

Most soil moisture sensors such as 10HS measures the dielectric constant of 
the soil using capacitance technology in order to find its volumetric water content 
(VWC), for scientific research and greenhouse applications. These sensors usually 
use 70 MHz frequency, which minimizes salinity and textural effects, providing 
high-resolution measurements that allow daily or hourly tracking of soil moisture 
content by sending analog voltage that is proportional to water content. These 
sensors have low sensitivity to salt and temperature, and are low power consump-
tion. They can be connected directly or via interfaces to IoT boards for real-time 

Figure 5. 
Typical sensor probes used for measuring environmental variables in greenhouse crop production.
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monitoring. Light level sensor, also known as Light Dependent Resistor (LDR) 
is an active sensor that is made of high accuracy, fast response, high resistance 
semiconductor which is sensitive to light. It decreases resistance with respect to 
receiving luminosity (light) on the component’s sensitive surface. The resistance 
of a photo-resistor decreases with increasing incident light intensity (it exhibits 
photoconductivity). In the dark, a photo-resistor can have a resistance as high as 
several megaohms (MΩ), while in the light, a photo-resistor can have a resistance 
as low as a few hundred ohms. It should be noted that the raw output data from this 
sensor need to be calibrated for specific interpretation. The SQ-110 sensor, specifi-
cally calibrated for the detection of solar radiation, provides at its output a voltage 
proportional to the intensity of the light in the visible range of the spectrum, a 
key parameter in photosynthesis processes. The waterproof DS18b20 is a robust 
and corrosion-free sensor that can be used for measuring soil temperature. This 
sensor comes with different cable lengths of 1.8 and 3 m and provides 9-bit Celsius 
temperature measurements. The DS18B20 communicates over a 1-Wire bus that by 
definition requires only one data line (and ground) for communication with the 
connectivity board. Another temperature sensor, Pt − 1000, works based on the 
resistance that varies between approximately 920 Ω and 1200 Ω in the range consid-
ered useful in greenhouse applications (−20 ~ 50°C approximately), which results 
in too low variations of voltage at significant changes of temperature for the resolu-
tion of the analog-to-digital converter. Most soil moisture sensors are in fact analog 
sensors (non-rust capacitive hygrometer) that determine volumetric water content 
(VWC) by measuring the dielectric constant of the media using capacitance/
frequency domain technology. An example is the analog sensor from Sun3Drucker 
that can be inserted directly into the soil to send moisture feedback data in real-
time using capacitive sensing. A cable length of 1.5 m has been tested and found 
to be noise-free for these sensors. The soil moisture sensor probe is corrosion-free 
(no electrolysis on the electrodes) since it is using capacitive measuring method, 
and therefore is free of electrolysis on the electrodes. Another soil moisture sensor, 
the ECHO EC-5, determines volumetric water content (VWC) by measuring the 
dielectric constant of the media using capacitance/frequency domain technology. 
The EC-5 probe 70 MHz frequency minimizes salinity and textural effects, making 
this sensor accurate in almost any soil or soilless media. Factory calibrations are 
included for mineral soils, potting soils, Rockwool, and perlite.

Other than the mentioned sensors, some specific applications in greenhouse 
production and research may require a custom-design sensor probe. For example, 
in a greenhouse with misting or fogging systems, it is necessary to determine the 
solution droplet deposition on the plants. Determining leaf wetness as a reference 
measurement to avoid condensation inside greenhouse environments in certain 
hours is also of interest. In large-scale commercial greenhouse production measur-
ing leaf surface wetness to determine the performance of spraying is required for 
chemical depletion. For this purpose, the ADP-AgroTech leaf wetness sensor model 
ADP-LWS2020 shown in Figure 6 has been designed with different shapes to mimic 
the actual leaf shape, and to convert the moisture on the leaf surface into an analog 
signal using capacitance change. This sensor has been optimized to eliminate noise 
and generate high-resolution output under extreme greenhouse conditions. The 
performance of this sensor has been tested under high temperature and humidity 
in different tropical lowlands of Malaysia, and has been found to be stable and 
resistant under direct solar radiation. It can be seen from Figure 6 that the surface 
of this sensor is composed of several rows of dielectric constant capacitor that has 
equal spacing and are connected to an electronic interface board for producing an 
analog signal. The ADP-LWS2020 can mimic the wetness state of a real leaf and 
detects the presence of surface moisture and calculates the duration of wetness. 
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The voltage at its output is inversely proportional to the humidity condensed on 
the sensor, and can be read at the analog input of Adaptive AgroTech connectivity 
boards. It can be used for greenhouse studies and control systems and for schedul-
ing irrigation. It also allows researchers to protect plants by giving early warnings 
about fungus and insect attacks.

2.2 IoT connectivity boards and modular accessories

Different multi-channel connectivity boards with WiFi and LoRa antenna 
that benefits from a modular design to be easily interfaced with sensor probes are 
shown in Figure 7. These boards are custom-designed to make possible adding new 
sensing capabilities to the existing wireless networks with minimum effort. In the 
same way, defective sensor probes may be easily replaced in order to ensure the 
lowest maintenance cost of the sensor network. The connectivity boards that are 
shown in Figure 7 include all the electronics and sockets necessary to connect the 
most typical sensors in wireless monitoring of greenhouse environment, includ-
ing BME280 (air temperature, humidity, and atmospheric pressure), DS18B20 
(soil temperature), LDR Photoresistor (light sensor), SX239 (soil moisture), and 
NEO-7 GNSS modules. The custom-designed version of these boards include the 
necessary components for more specific research applications, such as Pt-1000, 
ADP-AgroTech leaf wetness (shown in Figure 6), weather station (pluviometer, 
anemometer, and vane), Luminosity sensor (TSL2561), and distance sensor 
(TFmini from Benewake). For more robust and fast processing, the connectivity 
boards in Figure 7 benefit from the powerful ESP32 and Atmega328P microcon-
trollers that are integrated with customized codes for high efficiency and ultra-low 
power consumption (deep-sleep mode). The wireless communication between 

Figure 6. 
ADP-AgroTech leaf wetness sensor (model ADP-LWS2020) with different leaf shapes based on capacitive 
method for determining leaf surface moisture and greenhouse condensation. Images by courtesy of Adaptive 
AgroTech

Figure 7. 
Sample prototype of WiFi and LoRa connectivity boards with onboard storage for real-time monitoring and 
IoT control of greenhouse based on ESP32 and Atmega328P microcontroller. Images by courtesy of Adaptive 
AgroTech.
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these transmitter boards and receiver (gateway) is realized through Lora technology 
(433 MHz (Asia), 868 MHz (Europe) and 915 MHz (Australia and North America)) 
which covers 2 ~ 10 km distance in rural areas and is extendable to 100 km with 
repeaters. By default these boards have been programmed to read and record mea-
surements every 10 seconds which can be adjusted according to the growers’ needs. 
Data are stored on an onboard mini SD card or are transferred to an open-source 
secure cloud database via WiFi connection. Data can be viewed online at http://iot.
adaptiveagrotech.com/ or by installing Adaptive AgroTech smartphone app.

The wireless sensor and controller boards as well as other electronic components 
and modules are housed in sealed waterproof ABS enclosures that are rated as IP-66 
in order to withstand harsh environmental conditions such as sunlight, dust, mois-
ture, high humidity, insects, and sudden changes in temperature. Figure 8 shows 
a hybrid data acquisition system with modular components including the main 
connectivity board, sensor probes, connector cables, external solar-charged battery, 
and a solar panel. These components are interchangeable and can be connected to 
the mainboard using standard aviation plug GX16 male and female metal sockets. 
For greenhouse application, it is very important that all enclosures are high-quality 
ABS flame retardant material, corrosion resistance, anti-UV and anti-aging, 
antistatic, good sealing performance, long life, and suitable for all types of environ-
ments. The performance of these components and the metal sockets has been tested 
for over 12 months in different open-field and closed-field agriculture production. 
The external battery shown in Figure 8 is 5.0 V, 2400mAh that can be continuously 
charged with a 5 V, 500mAh solar panel, and can last over two years without any 
maintenance at 60 readings per hour when the mainboard is operating in deep-sleep 
mode. The voltage of the battery can be adjusted and increased to 7.7 V or reduced 
to 3.8 V for other applications. It is recommended that those sensor probes that are 
not intended to be used during the data collection should not be connected to the 
boards. Since several sensors share the same power line, a sensor that is not going 
to be used and still connected to the board will entail an additional consumption, 
resulting in a shorter life of the battery. Figure 8 also shows that the microclimate 
sensor has been placed in a protective shell to withstand direct sunlight and mois-
ture, and to stabilize the air temperature and relative humidity for more accurate 
measurement and preventing errors. Other types of shells for microclimate sensors 
can be used for greenhouse depending on the application. These shells are water-
proof and will keep water from seeping into the body of the sensor and damaging it, 
while at the same time airflow can pass through.

Figure 8. 
A hybrid data acquisition system with modular solar charged external battery, plug-and-sense probes, 32GB 
onboard, and multiple communication interfaces for data transfer including serial port, WiFi, and LoRa 
868Mhz. Image by courtesy of Adaptive AgroTech.

http://iot.adaptiveagrotech.com/
http://iot.adaptiveagrotech.com/
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2.3 Wireless communication and IoT-based monitoring and control

The trend in the monitoring of environmental parameters inside modern 
greenhouses is towards shifting from offline systems to wireless and cloud-based 
data collection architecture. Various remote systems, either by means of prototype 
or commercial, have been used for improving the performance of greenhouse 
monitoring. Some of the most recent examples include web-based, cloud-based, 
and IoT data collection, monitoring and control system [2, 3], wireless sensor 
networks [5, 8], field server-based monitoring [11], field router systems [12], and 
distributed data acquisition with a local controller and management [9]. A compre-
hensive comparison between the existing remote monitoring system in agricultural 
research is available in the work of [13]. It should be mentioned that the core part 
of any IoT sensing and control system is the wireless communication between the 
devices and the internet. A summary of the wireless communication that can be 
used in the greenhouse industry is presented in Table 1 to provide a quick compari-
son between their frequency bands, sensitivity, and coverage range. Network health 
analyzer software can also be used to check data transfer reliability.

IoT-based monitoring solutions [3] reduce data collection errors in greenhouse 
environments, while at the same time increase the flexibility of the remote control 
of devices. Real-time data generated from this process enables growers to have a 
continuous evaluation of the crop growth environment through dynamic assess-
ment. The traditional techniques frequently suffer from great labor intensity, low 
spatiotemporal resolution, a lack of mechanization and organization and also need-
ing much time in the growing of plants and observing the environmental aspects of 
the greenhouse. To address these problems, an IoT controller board and a modular 
wireless Datalogger system shown in Figure 9 were custom-designed to provide 
communication between sensor nodes, end-users, and greenhouse actuators. The 
controller has an onboard Raspberry Pi computer and two microcontrollers and is 
capable of receiving command signals using WiFi connection to run an 8-channel 
relay board, and two motor drivers. The control signals can be either generated by 
the greenhouse crop models algorithms that are coded into the onboard computer, or 
by the cloud-based streaming systems. At the same time, environmental sensors can 
collect measurements, store data on a SD card, and transmit data directly to a web-
server, or via wireless communication to a gateway using LoRa 868Mhz frequency. 
This platform allows real-time monitoring of the data on Adaptive AgroTech private 
secure cloud system which is accessible at iot.adaptiveagrotech.com or by installing 
the mobile application. A detailed description of this platform is available in [3]. 
Some of the specific application of the modular and flexible IoT automation system 
shown in Figure 9 can be summarized as: multi-purpose application for real-time 
monitoring in closed-field and open-field agriculture, measuring optimality degree 
and comfort ratio of greenhouse environments, as well as yield prediction of tomato 
using Simulink blocks and embedded crop growth models, prevention of plant 
diseases based on predictive models, multiple voltage lines for DC actuators, 8-chan-
nel relay controller, two stepper and DC motor drivers, open-source programming, 
LoRaWAN connectivity with built-in light sensor, GPS, and microclimate sensor, 
and waterproof IP66 enclosure with external battery module and charging circuits.

The architecture of the data transmission from sensor nodes to cloud-storage and 
from web-server to the controller is shown in Figure 10. A total of four layers, includ-
ing the farm layer (with sensor nodes), the backend layer, the wrapper later, and the 
frontend later are integrated in a way that end users can access data from their phone 
or desktop applications for real-time monitoring of the sensor measurements. In this 
scheme, each request sender is treated as the client, and the response provider as the 
server. The farm later has the role of (i) provider, in which wireless sensor nodes in 

http://iot.adaptiveagrotech.com/
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Radio Protocol Frequency 

bands

Transmission 

power

Sensitivity Range* Certification

XBee-PRO 
802.15.4 EU

802.15.4 2.4 GHz 10 dBm -100 dBm 750 m CE

XBee-PRO 
802.15.4

802.15.4 2.4 GHz 18 dBm -100 dBm 1600 m FCC, IC, 
ANATEL, 

RCM

XBee 868LP RF 868 MHz 14 dBm −106 dBm 8.4 km CE

XBee 900HP 
US

RF 900 MHz 24 dBm −110 dBm 15.5 km FCC, IC

XBee 900HP 
BR

RF 900 MHz 24 dBm −110 dBm 15.5 km ANATEL

XBee 900HP 
AU

RF 900 MHz 24 dBm −110 dBm 15.5 km RCM

WiFi WiFi
(HTTP(S),
FTP, TCP,

UDP)

2.4 GHz 17 dBm −94 dBm 500 m CE, FCC, IC, 
ANATEL, 

RCM

4G EU/BR 4G/3G/2G
(HTTP, 

FTP,
TCP, UDP)

GPS

800, 850, 
900, 1800, 

2100, 
600 MHz

4G: class 3
(0.2 W, 

23 dBm)

4G: 
−102 dBm

- km 
- Typical

base 
station
range

CE, ANATEL

4G US 4G/3G/2G
(HTTP, 

FTP,
TCP, UDP)

GPS

700, 850, 
1700,

1900 MHz

4G: class 3
(0.2 W, 

23 dBm)

4G: −103
dBm

- km 
- Typical

base 
station
range

FCC, IC, 
PTCRB,
AT&T

4G AU 4G (HTTP, 
FTP,

TCP, UDP)

700, 1800, 
2600
MHz

4G: class 3
(0.2 W, 

23 dBm)

4G: −102
dBm

- km 
- Typical

base 
station
range

RCM

Sigfox EU Sigfox 868 MHz 16 dBm −126 dBm km 
- Typical

base 
station
range

CE

Sigfox US Sigfox 900 MHz 24 dBm −127 dBm km 
- Typical

base 
station
range

FCC, IC

Sigfox AU 
/ APAC /
LATAM

Sigfox 900 MHz 24 dBm −127 dBm km 
- Typical

base 
station
range

—

LoRaWAN 
EU

LoRaWAN 868 MHz 14 dBm −136 dBm > 15 km CE

LoRaWAN 
US

LoRaWAN 902-
928 MHz

18.5 dBm −136 dBm > 15 km FCC, IC
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Figure 9. 
A prototype IoT automation system used in real-time monitoring and control of greenhouse environments, (a) a 
controller board with two WiFi modules, onboard computer, 8-channel relays, and 2 stepper motor drivers,  
(b) a wireless LoRa sensor and Datalogger with modular components, (c) a custom-built sensor platform.

Figure 10. 
A general architecture of a WSN based monitoring of greenhouse environment.

Radio Protocol Frequency 

bands

Transmission 

power

Sensitivity Range* Certification

LoRaWAN 
AU

LoRaWAN 915-
928 MHz

18.5 dBm −136 dBm > 15 km —

LoRaWAN 
IN

LoRaWAN 865-
867 MHz

18.5 dBm −136 dBm > 15 km —

LoRaWAN 
ASIA-PAC/ 
LATAM

LoRaWAN 923 MHz 18.5 dBm −136 dBm > 15 km —

*Line of sight and Fresnel zone clearance with 5dBi dipole antenna.

Table 1. 
Standard wireless communications used in agricultural applications.
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the farm collect data and transmit to a gateway device that has access to the internet 
using WiFi protocol, or convert the data packet to JSON format before sending the 
data to the backend layer using HTTPS protocol, (ii) client, in which each wireless 
node sends requests to the backend and receive responses in JSON format via HTTP 
protocol. The backend layer consists of a middle layer between the backend server 
and the farm layer. A middle device or server in the backend layer that uses WiFi and 
REST API providers first receive data from the farm layer and then transfer the pack-
ets to the backend layer. The programming language used in the backend server is C# 
and the database is an SQL server. Received data are pre-processed, analyzed, and 
then categorized using queries, crop models, and AI algorithms, and are then saved 
in the database using controllers that have been implemented in the C# frameworks. 
The queries can run on the database to receive responses in the defined format. The 
communication between the backend server and SQL server is established using 
HTTP protocol and JSON format. The wrapper layer includes the cloud storage in 
which processed data from the backend are sent to IoT serve and are saved. This gives 
the user the advantage of having a secure backup of the collected data. The provider 
receives data from the backend layer and for further real-time assessment of the field 
condition. The input of this layer is the transferred data which are collected every 5 
or 10 minutes by the field layer (sensor nodes in the farm). The frontend layer, also 
called the presentation layer, provides data visualization by means of real-time plots, 
control buttons, and indicators on, mobile apps, webpages, or other platforms. The 
frontend layer can have access to the collected data via the backend layer using send-
and-request protocols, and receive responses from the wrapper layer. The presented 
wireless IoT framework was tested in various greenhouse environments and showed 
that while the sensor measurement was 100%, the network mean packet reliability 
was between 95 and 100% due to the packet losses. This failure can be related to the 
high-density plants canopy which can significantly reduce the signal strength of the 
sensor nodes. Graphical results of experimenting with the wireless sensor and IoT 
controllers are provided in Figures 11 and 12.

2.4 Case study: verifying performance of a crop model with a WiFi sensor node

In order to improve greenhouse yield and profits, collected data from multiple 
wireless sensors that are deployed in different parts of the greenhouse should be used 
with knowledge-based software, and crop growth models. These models are often sen-
sitive to boundary inputs and may cause inaccurate simulation results. The objective of 
this case study was to use a WiFi sensor node for collecting air temperature and light 
data in order to evaluate parameter robustness of the reduced state-variable TOMGRO 
model [14] for yield estimation of tomato in a random greenhouse. The hypothesis 
was to test whether the model parameters are robust enough to translate an adverse 
greenhouse environment (with air temperature so high to prevent any crop growth 
development) to realistic biomass and yield. For this purpose, TOMGRO was first 
implemented in Matlab Simulink in order to create a flexible platform for easier inter-
facing with the inputs and outputs. The final Simulink block was validated with the 
Lakecity datasets of [14]. To produce boundary data, an experiment was carried out in 
an empty glass-panels covered greenhouse under tropical lowlands climate conditions 
by turning off all ventilation and cooling systems for creating an adverse microclimate 
scenario with zero yield expectation. The glasshouse was located at the campus of 
Malaysian Agricultural Research and Development Institute (Latitude: 2°59′24.7", 
Longitude: 101°41’56.1”). Hourly measurements of air temperature and solar radiation 
were continuously collected for 254 days using a WiFi sensor node similar to the one 
shown in Figure 13. Plots of raw air temperature and solar radiation data from the 
glasshouse experiment are also shown in Figure 13 followed by a detailed outlook of 
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air temperature plots that shows daily maximum, averaged, and minimum values. It 
can be seen that air temperature readings inside the glasshouse have reached to 68°C 
in some specific hours, which not only prevents tomato growth, but can also have 
serious negative impacts on the solar-charged battery of the WiFi sensor node. In 
addition, daily averaged air temperature values between hours of 12:00 and 18:00 are 
in the range of 30 to 50°C. The average, minimum and maximum values during the 
entire experiment were equal to 34.5, 22.5, and 68.3°C, corresponding to a simulated 
growth response of zero between hours of 12:00 and 18:00. Results of simulation with 

Figure 12. 
Lab scale implementation of IoT monitoring and control of light level using LoRa 868 Mhz transceivers.

Figure 11. 
Sample of air temperature data collected every 60 seconds using Adaptive AgroTech LoRaWAN sensor located 
inside a greenhouse storage room.
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TOMGRO model showed that the estimated total above-ground dry weight (WT), 
total fruit dry weight (WF), and mature fruit dry weight (WM) were equal to 0.576, 
0.085 and 0.072 kg/m2 respectively. This study tested the claimed conclusion of [14] 
that states “it is possible to use the same reduced model with parameters estimated 
at one location to simulate leaf area and above-ground weight of tomato growing in 
greenhouse conditions in other locations” using boundary data that were continu-
ously collected by a WiFi sensor node: Based on the consistency of the low estimated 
fruit yield with the simulated growth responses, the hypothesis that the simplified 
TOMGRO model with its initial parameters is not capable of estimating tomato yield 
for a random greenhouse in a different geographical location was rejected. It can be 
concluded that long-term historical data collected by IoT sensor nodes can be used 
to improve the performance of crop models, as well as offering new insights to add 
artificial intelligence algorithms to the automation system.

3. Artificial intelligence in greenhouse automation

Automation and control of greenhouse environments have to deal with various 
uncertainties and disturbances that cannot be entirely modeled by mathematical 
equations [1, 7, 15–17]. Adding artificial intelligence to greenhouse automation 

Figure 13. 
Performance of IoT monitoring with WiFi sensor node in an empty glasshouse without climate control for 
testing the performance of the connectivity board and battery modules under adversely hot and humid 
environment.
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means that the AI algorithm must coexist with all other pieces of the automation 
system fluidly, including multiple sensors, physical systems that control devices 
and actuators. The main justification for designing AI-based automation systems 
in greenhouse environments such as those that operate with fuzzy logic or neural 
network algorithms is to shift toward a robust, predictive, and adaptive control 
command strategies that reduce production costs and improve yield. Artificial 
intelligence is a computer system that is programmed to present intelligent behavior 
by perceiving the environment, making decisions, and taking action. AI can con-
tribute to sustainable greenhouse production in different ways such as reducing the 
electrical energy consumption of the climate control systems, or reducing water 
and chemical demands for fertigation system. For example, AI algorithms can be 
implemented for updating microclimate set-points (also known as reference values) 
depending on a specific crop, growth stages, light conditions, and external variables. 
These set-points are conventionally created manually by expert growers, or by means 
of knowledge-based decision support systems such as adaptive management [18] or 
dynamic assessment [19]. Set-points [6] are the core inputs of the microclimate con-
trol system and therefore must be calculated precisely, otherwise production failure 
and crop loss can occur in a few hours. Results of an experiment with three different 
tropical greenhouses in the lowlands of Malaysia that are shown in Figure 14 reveal 
that without proper climate control algorithms, air temperature can reach 37°C or 
60°C depending on the structural design and external condition [20, 21].

To overcome these challenges, a conventional greenhouse climate controller 
that triggers ventilation, misting, or spraying in order to reduce air temperature 
was developed and tested (Figure 15). During cold seasons, the controller was 
interfaced with time-based or sensor-based actuators for triggering of the heat-
ing system. These approached however are not efficient for high-tech large-scale 
greenhouses. An integrated climate control system should not only benefit from 
the wireless and IoT automation technology, but also from the innovative cooling 
and heating methods that operates based on AI algorithms. In this scheme, col-
lected data from multiple wireless sensors that are deployed in different parts of the 
greenhouse are used to train machine learning algorithms that have been designed 
based on knowledge-based systems and mathematical crop growth models. The 
output commands and decision messages from this process are then used to control 

Figure 14. 
Wireless monitoring of microclimate inside three tropical greenhouses with different covering materials (A: 
net-screen, B: polyethylene film, C: Polycarbonate panels) without proper climate control algorithms showing 
that air temperature are significantly far from optimal set-points and can exceed 37 °C or 60 °C depending on 
the structural design and outside condition.
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specific elements within the crop growth microenvironment while at the same time 
they are optimized to reduce energy, chemicals, and water demands. An example 
of this approach was implemented on a lab-scale greenhouse shown in Figure 15 
by performing PID speed control on 4 ventilation fans, and manual speed control 
on the other two fans (referred to as AI fans) for obtaining training dataset. The 
presented platform allowed experimenting with various methods, including fuzzy-
logic self-tuning PID controller and machine learning to adjust the speed of the 
two AI fans. The air temperature responses were then monitored in real-time using 
WiFi sensor nodes and are shown by the two plots in Figure 15. A simple fuzzy logic 
control algorithm was also implemented on a research tropical greenhouse shown 
in Figure 16 to demonstrate the difference between air temperature response in a 
timer-based control and intelligent control. A summary of the fuzzy logic rules is 
presented in Tables 2 and 3.

Another example of AI application in greenhouses is the prediction of micro-
climate parameters as demonstrated in Figure 17. This prediction can be used for 
advanced microclimate control systems such as adaptive or predictive control, energy 
demand calculation, or for applications such as disease prevention, decision support 
systems, and cost–benefit analysis. It should be noted that building a successful AI 
algorithm for this purpose requires navigating the entire AI workflow and focusing 
on more than just one training data set and model. In this example, several datasets 
of the past 10 days from different tropical greenhouses were used to predict the 11th 
day data. Extensive simulations with different numbers of days were used to find out 

Figure 15. 
Lab-scale implementation of IoT monitoring and control of air temperature, (left): 4 PID plus 2 manual-
controlled fans, and (right): 4 PID plus 2 AI-controlled fans.

Figure 16. 
A comparison between timer-based and fuzzy-logic based control of air temperature in an experimental 
greenhouse under lowland climate conditions of Malaysia.
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State Tsetpoint AirTinside

T(t)

AirTinside

T(t + 1)

et

(Ts- Tin (t))

et + 1

(Ts- Tin (t + 1))

Δe Output

1 25 30 30 −5 −5 0 e = 
Negative, 
Δe = Zero

Cool 

Normal

2 25 30 29 −5 −4 +1 e = 
Negative, 

Δe = 
Positive

Stop Cool

3 25 30 31 −5 −6 −1 e = 
Negative, 

Δe = 
Negative

Cool Big

4 25 25 25 0 0 0 e = Zero, 
Δe = Zero

Ideal

5 25 25 24 0 +1 +1 e = Zero, 
Δe = 

Positive

Warm 
Normal

6 25 25 26 0 −1 −1 e = Zero, 
Δe = 

Negative

Cool 
Normal

7 25 20 20 +5 +5 0 e = 
Positive, 

Δe = Zero

Warm 
Big

8 25 20 19 +5 +6 +1 e = 
Positive, 

Δe = 
Positive

Warm 
Very Big

9 25 20 21 +5 +4 −1 e = 
Positive, 

Δe = 
Negative

Warm 
Normal

Table 2. 
Example of a simple fuzzy logic control algorithm implemented on a research tropical greenhouse,: Ts = Tsetpoint, 
Tin (t) = Tinside at Time (t), Tin (t + 1) = Tinside at Time (t + 1), et = error at Time (t) = Ts- Tin (t), et + 1 = error at Time 
(t + 1) = Ts- Tin (t + 1), Δe = change of error = e (t + 1) - e (t).

errorΔerror Negative 

Big

Negative Zero Positive Positive Big

Negative Big Cool Big Cool Big Cool STOP 
Cooling

Warm 
Normal

Negative Cool Big Cool Cool STOP 
Cooling

Warm 
Normal

Zero Cool Cool Current 
condition

STOP 
Cooling

Warm 
Normal

Positive STOP 
Cooling

STOP 
Cooling

Warm Normal Warm 
Normal

Warm Big

Positive Big STOP 
Cooling

Warm 
Normal

Warm Normal Warm Big Warm Big

Table 3. 
The fuzzy logic rule table.
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Figure 17. 
Preliminary results of predicting the next 24 hours of air temperature, relative humidity, and vapor pressure 
deficit in a naturally ventilated tropical greenhouse using feed-forward neural network and a 10-days dataset.

Figure 18. 
IoT realization of the adaptive management framework using Simulink blocks, LoRa 868Mhz sensor node, and 
raspberry Pi embedded board for evaluation and adjusting greenhouse microclimate.

that a dataset that includes at least the past 10 days’ measurement is required for the 
AI algorithm to effectively predict the microclimate of the next day. In this example, 
data preparation was more than having a lot of data or even pre-processing all of the 
data to be consistent. This process involved adding human insight to the selection of 
the training data, as well as considering augmenting data sets with synthetic data and 
more samples, and providing clean labeled data. In this regard, choosing the right AI 
algorithm, such as machine learning, deep learning, or a combination, and identify-
ing the optimal set of parameters will lead to the most robust and accurate prediction 
model. As mentioned before, simulation techniques are extensively used to verify 
the performance of AI algorithms in every situation and scenario, such as different 
climate conditions, greenhouse structural design, covering materials, the crop that 
is being cultivated, and the growth stage. An example of simulation is the adaptive 
management framework [18] that allows growers to verify edge cases and test and 
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run hundreds of scenarios that would otherwise be too time-and-cost intensive. 
In the example of microclimate prediction shown in Figure 17, the outputs of the 
AI which are microclimate data of the next 24 hours are used with predictive and 
adaptive control algorithms [18], therefore simulation enables validating the control 
process before deploying the codes on the actual hardware.

The final AI-based automation algorithms can be deployed as computer codes or 
Simulink blocks on cloud-based streaming systems, or on a local onboard computer 
similar to the one shown in Figure 18, which demonstrates IoT sensor fusion in com-
bination with a comfort ratio model [2, 19, 20, 22] for real-time dynamic assessment 
of microclimate parameters in commercial scale greenhouse production of tomato. 
This method is based on the integration of wireless communication, distributed 
data analyzing and a web-based data monitoring dashboard that is used for data 
collection, processing, and monitoring. The wireless sensor node has shown a high 
spatiotemporal resolution with excellent stability in data transfer at 10 readings per 
minute within 1 km distance from the LoRaWAN gateway. The presented boards in 
Figure 18 has been used as a proof-of-concept and showed the opportunity to use 
these new tools for model-based investigation of the spatial and temporal variations 
in the air temperature, relative humidity and, VPD inside greenhouse crop produc-
tion [3]. The implication is to provide growers with digital tools that can assist in 
knowledge-based decision making for minimizing energy cost and yield loss due to 
low fruit quality. Moreover, the IoT automation system and cloud data processing 
contribute as a real-time online assessment tool to investigate effects of structure 
design, covering materials, cooling techniques, and growing seasons on the optimal-
ity and comfortability of microclimate parameters and their correlation with yields.

4. Conclusion

This chapter provided an overview of the application of IoT sensors and control-
lers that can be integrated with crop models and artificial intelligence algorithms 
for sustainable greenhouse production. Several affordable yet robust wireless 
sensor nodes developed by Adaptive AgroTech that benefit from WiFi and LoRa 
communication were presented with sample results from lab-scale and commercial-
scale greenhouses. The introduced wireless transceivers were shown to be flexible 
and modular, which makes possible easy installation anywhere in the greenhouse 
environments to overcome cable wiring difficulties for the sensors and the LAN 
connection. Additionally, the flexibility in data sharing can be upgraded on the 
cloud system with user experience. The generated commands and decisions that 
are received by the IoT automation board from the cloud-based streaming system 
are used to control specific elements within the crop growth microenvironment 
while at the same time they can be optimized by the onboard computer to reduce 
energy, chemicals, and water demands. It can be concluded that developing a robust 
and affordable IoT automation system for greenhouse condition should take into 
account the correct selection and combination of the battery and charging units, 
the electronic housing box, connectors and plugs, data wire and cables, wireless 
antenna, and the modularity and compatibility of the package components. Results 
of experiments inside different greenhouses with high-density plants showed 
that the major disadvantage of wireless sensor nodes in real-time monitoring is 
the repeated loss of connection even in mesh applications. The water in the high 
amount of biomass of the plants damps the radio signals and avoids communication 
distances over long ranges. This can be solved by using different techniques (that 
sometimes involve a huge amount of effort), including antennas with cable for 
higher positions, higher mesh density, multiple gateway nodes, and higher output 
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power. In general, it is a good practice to store all measurement data using devices 
that benefits from local memory. Therefore, the asynchronous readout is enabled 
for the user, and the data is not missed which an efficient practice for IoT is moni-
toring in large-scale commercial berry production. It is expected that this process 
embraces the uncertainties, especially in the remote areas, and consequently 
contributes to a higher yield with lesser inputs.
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