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Abstract

A construction of national spatial reference systems (NSRS) is promoted in many countries
due to modern achievements of Global Navigation Satellite System (GNSS) methods and
results of building of high accurate geoid/quasi-geoid models at centimeter level of accuracy.
One of the most popular methods used for the construction of the NSRS is related to
Helmert block adjustment method, by which we ought to solve techno-scientific task of a
separate adjustment of GNSS network in International Terrestrial Reference Frame (ITRF)
and next combination of a results of adjustment of the terrestrial geodetic and GNSS
networks in the NSRS. In this chapter, we carry out a research on the usage of a recurrent
adjustment method with Givens rotation for solving the abovementioned task on an account
of its advantages of being effective for application of a technique of sparse matrix, outlier
detection and very simple for solving the subsystem of observation equations, created based
on the transformation of the results of the separate adjustment of the GNSS network from
the ITRF into the NSRS. The experiment results of solving the abovementioned task for the
GPS network in the North Vietnam had shown that the horizontal and vertical position
accuracy of the GPS points in VN2000–3D had reached the few centimeter level.

Keywords: method of recurrent adjustment, combined adjustment of terrestrial geodetic
and GNSS networks, recurrent adjustment method with rotation, method of Givens
rotation, national spatial reference system

1. Introduction

In the past, in different countries, national horizontal and vertical reference systems had been

constructed independently from each other; in addition, horizontal control points almost did
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not coincide with vertical control points. A national first- and second-order astro-geodetic

network constructed by traditional geodetic methods did not allow to obtain horizontal posi-

tioning accuracy of the horizontal control points at the centimeter level. Because of an accu-

mulation of measurement errors in the national horizontal control network, a coordinate

transmission from one origin point led to the more horizontal positioning error of the distant

horizontal control points. For example, the horizontal position accuracy in NAD83 (1986)

reached the level of 1 m [4, 34]. Such analogical situation had also been happened to the

vertical control network. For the national first- and second-order astro-geodetic networks of

the former Soviet Union in SK95, the maximal RMS of horizontal position of horizontal control

points reached the level of 1.5 m [9].

Nowadays, traditional geodetic methods cannot satisfy the accuracy requirements of the national

horizontal and vertical reference systems at the centimeter level according to modern techno-

scientific achievements. The abovementioned accuracy requirements only will be satisfied by the

construction of the NSRS based on modern achievements of the GNSS methods, the construction

of the highly accurate national geoid/quasi-geoid model and the geopotential vertical datum.

Present-day worldwide and rapid development of GNSS methods, especially the construction

of Continuously Operating Reference Station (CORS) networks of GNSS base stations and

mathematical processing of GNSS data in the ITRF with usage of International GNSS Service

(IGS) products, and construction of national hybrid geoid/quasi-geoid models with an accu-

racy at the level of few centimeters had created favorable conditions for building of the NSRS

in many countries, for example, ETRS89/DREF91/2016 (Germany), GDA2020 (Australia) [14],

NSRS2022 (USA CONUS, Canada, Caribbean Islands. Hawaii and Greenland) [35], and so on.

In case of processing the GNSS data in the ITRF, highly accurate spatial coordinates of geodetic

points will be converted from the ITRF to the NSRS by the seven parameter Bursa-Wolf

formula. Next, we symbolize Δm,ε,ε,ε,Z,Y,X
ZYX000 as the seven coordinate trans-

formation parameters from the ITRF to the NSRS by Bursa-Wolf formula, where 000
Z,Y,X

are the spatial coordinates of the origin of the ITRF with respect to the origin of the NSRS,

ZYX
ε,ε,ε are Euler rotation angles of the coordinate axes of the ITRF with respect to the

analogical coordinate axes of the NSRS, Δm is a scale factor change.

For geodetic purposes, the NSRS contains an ellipsoidal surface used as the reference surface

for the determination of an ellipsoidal coordinate system and a national plane coordinate

system. A Geoid/quasigeoid surface is used for the reference surface of the national vertical

reference system. In addition, the national geoid/quasigeoid model creates relationship of the

geoid/quasi-geoid surface to the ellipsoidal surface and satisfies the connection of the spatial

coordinates of geodetic points with the national vertical reference system.

In practice of the construction of GNSS network by the static relative positioning technique, the

components ΔZΔY,ΔX, of baseline vector between two GNSS points obtained from the

processing of GNSS observations have been used as measured values in the GNSS network.

Using IGS products for processing GNSS observations in the ITRF, the components
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ΔZΔY,ΔX, of the baseline vectors have very high accuracy and have been used for the

adjustment of the GNSS network. In [19], formulas for apriori assessment of relative horizontal

position accuracy xyM between two GNSS points and accuracy of ellipsoidal height Hm had

been proposed in the following forms:
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where b  - is the distance between two GNSS points in units of km; B  - is the geodetic

latitude of GNSS point; SM (in units of cm) – accuracy of IGS precise ephemerides at the level

of 2.5 cm (or 5 cm).

From formulas (1) and (2), we see that for the GNSS network, constructed by the static relative

positioning technique, using IGS products for processing of GNSS observations in the ITRF

enables very high relative horizontal position accuracy between two any GNSS points and the

very high accuracy of ellipsoidal heights. The highly accurate GNSS network can be used for

maintenance and improvement of the accuracy of the national horizontal and vertical reference

systems. The construction of the NSRS will satisfy the abovementioned demands. For the

construction of the NSRS, we can solve for the three of the following main techno-scientific

tasks:

• Construction of the passive GNSS network, covering whole national territory;

• Construction of the national geoid/quasigeoid model with the accuracy at centimeter

level;

• Combined adjustment of the terrestrial geodetic and passive GNSS networks in the NSRS.

With the purpose of the maintenance and the improvement of the accuracy of the national

horizontal and vertical reference systems, apart from some of the CORS stations, the passive

GNSS network still consists of horizontal and vertical control points which are called as

ground control points and have been selected by the following criteria [1, 7]:

• Their location must satisfy requirements of a good satellite geometry and a sky visibility.

• Quick and easy access to them.

• Selected points may be located on geologically stable positions.

The passive GNSS points may have a 20–100 km density [1, 2, 6–8]. The passive GNSS

networks have been built in many countries, for example High Accuracy Reference Network

(USA) [33], Passive Control Network (Canada) [3, 38], Auscope GNSS Network (Australia),

and so on.
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Highly accurate ellipsoidal heights at the vertical control benchmarks which are derived from

the processing of co-located GNSS observations in the ITRF, especially for the countries at the

low and mid-latitudes, enable determining highly accurate geoid/quasi-geoid heights at those

benchmarks. Those are very important data source for the determination of GNSS-leveling

geoid/quasigeoid heights used for the improvement of accuracy of the national gravimetric

geoid/quasi-geoid models.

Over the last decade, countries in Europe, South America, Canada, the United States of America,

and so on had developed the geoid-based vertical reference systems (geopotential datum)

[36, 37, 40]. An initial surface of the geopotential datum is the geoid surface with the geopotential

.
0

W With usage of the geopotential datum, we have determined geopotentials of the vertical

control benchmarks that will be used for the construction of the geopotential field model on the

national territory or in a region. In addition to this, highly accurate ellipsoidal heights deter-

mined by the GNSS methods at the vertical control benchmarks allow calculating anomalous

geopotentials of those control benchmarks which are additional data source for making more

precision of spherical harmonic coefficients of the Earth Gravitational Model [21].

In [25], it is shown that in the NSRS, the relative accuracy of spatial coordinates may reach the

level of 10–9. Based on this criterion, in [20], it had been proved that the accuracy of the national

geoid/quasi-geoid model can be improved to a level of higher than �4 cm. At present, the

national geoid/quasigeoid models in many countries, for example, AUSGeoid09 (Australia),

USGG2012 (USA), CGG2013 (Canada), OSGM15 (UK), GCG2016 (Germany), and so on, have

the accuracy higher than the abovementioned limitation, which guarantees to obtain orthometric/

normal heights of points of interest with accuracy at the centimeter level based on the highly

accurate national geoid/quasi-geoid model and results of GNSS data processing in the ITRF.

With the purpose of the maintenance and the improvement of accuracy of the national hori-

zontal and vertical reference systems, in this chapter, we research on methods used for com-

bined adjustment of terrestrial geodetic and passive GNSS networks, especially on a recurrent

method with rotation for a combined adjustment of terrestrial geodetic and GNSS networks in

the NSRS.

Although we use the terminology “combined adjustment of terrestrial geodetic and GNSS

networks in the NSRS,” the terrestrial geodetic network comprising horizontal and vertical

control networks had been adjusted previously. Therefore, in this chapter, we understand this

terminology as “combination of the results of separate adjustment of terrestrial geodetic and

GNSS networks in the NSRS.”

2. Methodology

2.1. Methods for combined adjustment of terrestrial geodetic and passive GNSS networks

A terrestrial geodetic network contains the national horizontal and vertical control networks

that had been adjusted separately in the national horizontal and vertical reference systems. For

the ground control points selected from the national horizontal and vertical control points and

Accuracy of GNSS Methods112



used for the construction of the passive GNSS network, their national ellipsoidal coordinates

play very important role in solving the task of the combined adjustment of the terrestrial

geodetic and the passive GNSS networks. The accuracy improvement of the national ellipsoi-

dal coordinates (or corresponding spatial coordinates) of the abovementioned ground control

points in the NSRS is the purpose of solving of the abovementioned task.

In common case, it is assumed that the national reference ellipsoid and the global reference

ellipsoid are different form each other. For the national horizontal control points from results

of processing of colocated GNSS observations in the ITRF according to the global reference

ellipsoid, we will create relationship between the global geodetic latitudes, longitudes and the

national geodetic latitudes, longitudes of these points by the Molodensky formula. This allows

to obtain the national geodetic latitude, longitude of the vertical control benchmarks on which

GNSS observations had been performed.

The orthometric/normal height of the national horizontal control points can be obtained by

precise spirit (geometric) leveling or using a national geopotential field model with determined

geopotential 0
W of the national geoid. The first national geopotential field model in Vietnam

had been declared in [23].

Such national ellipsoidal heights of the ground control points fully can be derived based on the

highly accurate national geoid/quasigeoid model and the GNSS method. By such ways, we will

obtain the national ellipsoidal coordinates of the ground control points, which will then be used

for the calculation of approximate spatial coordinates ZY,X, of these points in the NSRS.

In geodetic practice have been created two different directions related to development of

methods for the combined adjustment of the terrestrial geodetic and GNSS networks. In the

first direction, the components ΔZΔY,ΔX, of baseline vectors in the GNSS network have

been used as pseudo-observations for the combined adjustment with different terrestrial

observations on the national reference ellipsoid and for them in observation equations

unknown parameters are ellipsoidal coordinate corrections and coordinate transformation

parameters Δm,ε,εε
ZY

,
X [26]. In case the seven coordinate transformation parameters

by Bursa-Wolf formula are known, the components ZYX ,, of baseline vectors will be

transformed from the ITRF to the NSRS. After that, those components ΔZΔY,ΔX, of base-

line vectors can be transformed to Δh,α,s, where αs,  - is length and azimuth of the

geodesic; Δh  - is the difference of ellipsoidal heights. The values Δhα,s, will be used as

pseudo-observations for the combined adjustment with various terrestrial observations on the

national reference ellipsoid [26, 27].

The second direction is related to the development of methods for the combined adjustment of

the terrestrial geodetic and GNSS networks based on the Helmert block method by principle: a

separate adjustment of the terrestrial geodetic and GNSS networks and their next combination.

The separate adjustment of the passive GNSS network will be performed with two following

purposes:

• Outlier detection and their removal (if they exist) in the passive GNSS network.

• Determination of highly accurate spatial coordinates of the GNSS points in the ITRF.
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We will continue the research of the second direction in the following contents of this chapter.

It is assumed that the passive GNSS network consists of NP points, in which np common

points (np ≤NP) are the ground control points. In addition, these points have the approximate

spatial coordinates in the NSRS presented in the form of the national spatial coordinate vector:

T

npnpnp111 )Z,Y,X,...,Z,Y,(Xτ ð3Þ

with variance–covariance matrix ,.QμK
ττ

kxk

τ where npk .3 - order of matrix; τμ - RMS of

the unit weight determined apriori.

Without the loss in generality, we arrange ground control points in the first orders. After the

separate adjustment of the passive GNSS network in the ITRF, we obtain the adjusted spatial

coordinate vector of the NP GNSS points in following form:

ð4Þ

with variance-covariance matrix ,.RμK
1

S

2

SS
where S is the RMS of the unit weight and SR

is the normal matrix of the order K obtained from the process of the separate adjustment of the

passive GNSS network. In addition, the order K = 3.NP; 1S is a subvector of the spatial

coordinates of the np ground control points in the ITRF; 2S is a subvector of the spatial

coordinates of the remaining (NP – np) GNSS points in the ITRF.

In common case, for the GNSS points, the spatial coordinates Z,Y,X in the ITRF are related to

the spatial coordinates in the NSRS by Bursa-Wolf formula in the following form:
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ð5Þ

Now we symbolize
T

ZYX000 Δm),ε,ε,ε,Z,Y,(Xω as seven coordinate transforma-

tion parameters from the ITRF to the NSRS; τ~ as vector of the adjusted spatial coordinates of

the ground control points in the NSRS, which will be obtained after the combined adjustment

of the terrestrial geodetic and passive GNSS networks and has the following form:

.δτττ~ ð6Þ
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where vector τ is represented in form (3); δτ  - is vector of spatial coordinate corrections.

δSSS
~ as vector of the adjusted spatial coordinates of the GNSS points in the ITRF

obtained after the combined adjustment of the terrestrial geodetic and passive GNSS networks.

In addition, vector S
~ and vector of spatial coordinate corrections have following forms with

respect to vector S represented in form (4):

,
~

~

~

2

1

S

S

S ð7Þ

.

2

1

δS

δS

S ð8Þ

With above presented notations, for the np ground control points from formula (5) yields

.
~~

G.ωSτ
1

ð9Þ

where block matrix G with dimension NP � 7 has form:

,

NP

2

1

NPx7

G

.

.

G

G

G

additionally sub-block matrix i
G with order 3� 7 (i = 1,2,…,NP) is represented in following form:

.

iii

iii

iii

i

Z0XY100

YX0Z010

XYZ0001

G

When the seven coordinate transformation parameters of Bursa-Wolf formula are unknown,

the mathematical model of the combined adjustment of the terrestrial geodetic and GNSS

network had been proposed in Ref. [31] in the following form:
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,

,

0LG.ωδτδS
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1
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where the third condition equation in the abovementioned model is inferred from the relation

(9) accounting for formulas (6), (7), (8); vector of misclosures .τSL 1

System of observation equations (10) has K + k + 7 unknown parameters, in which there are

K + k spatial coordinate corrections.

In case the approximate values of the seven coordinate transformation parameters of Bursa-

Wolf formula
T(0)(0)

Z

(0)

Y

(0)

X

(0)

0

(0)

0
,

(0)

0

(0)
)Δm,ε,ε,ε,Z,Y(Xω had been determined, we

fully can convert vector S (4) from the ITRF to the NSRS and get a vector of the transformed

spatial coordinates θ of the all GNSS points in the NSRS in the following form:

,

2

1

θ

θ
θ ð11Þ

where the subvector 1θ corresponds to the np ground control points; subvector 2θ refers to the

remaining (NP – np) GNSS points.

In this case, a difference between the vector τ (3) and the subvector 1θ in (11) mainly was

caused by the existence of errors in the vector τ (3) and the vector of approximate seven

coordinate transformation parameters .
(0)
ω For the task of the combined adjustment of the

terrestrial geodetic and passive GNSS networks in the NSRS, when we use the vector of the

spatial coordinates θ (11) as the vector of pseudo-measurements, an improvement in the

accuracy of the national spatial coordinate vector τ (3) will be obtained due to the high

accuracy of the vector ,θ large number of redundant pseudo-measurements and taking

account of variance–covariance matrix
1

S

2

SS .RμK of the vector .θ

Wewill carry out a research on the method of the combined adjustment of the terrestrial geodetic

and passive GNSS networks in the NSRS proposed in [16]. In this method, the subvector 2θ in

the form of (11) will be used for the subvector of approximate spatial coordinate of the remaining

(NP – np) GNSS points in the NSRS. Then taking into account vector τ (3), the vector of the

approximate spatial coordinate τ̂ of the all GNSS points in the NSRS has the following form:

.ˆ

2θ

τ
τ ð12Þ

Accuracy of GNSS Methods116



Vector of spatial coordinate correction τδˆ and vector of last spatial coordinate τδττ ˆˆ
~
ˆ are

represented in the following forms:

,ˆ

npNPδτ

δτ
τδ ð13Þ

.~

~
~
ˆ

2θ

τ
τ ð14Þ

With the purpose of decrease in influence of the errors in the vector of approximate seven

coordinate transformation parameters (0)
ω on the results of the combined adjustment of the

terrestrial geodetic and passive GNSS networks in the NSRS, we will use vector of corrections
T

000 δZ,δY,δXδω applied to transformed coordinates by formula (5). For the vector of

transformed spatial coordinates θ (11), its last value
SVθθ

~ is represented in the form:

,~

~
~

2

1

θ

θ
θ ð15Þ

where SV is the vector of corresponding spatial coordinate corrections.

From the relation

,
~
ˆ

~
τΩ.δωθ

where the block matrix Ω with dimension NP x 3 has the form:

,
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2

1

NPx3

E

.

.

E

E

Ω ð16Þ

additionally sub-block matrix iE is an unit matrix of the order of 3x3 (i = 1,2,..,NP), taking into

account the formulas (11), (12), (13), (14), (15). We obtain the system of observation equations

in the following form:

,ˆ
Kx1

S

3x1Kx1

S

Kx1

S LΩ.δωτδV
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where the vector of free components has the form:

,ˆ

Ο

.................

θτ

θτL

1

Kx1

S

Ο is the subvector corresponding to the subvector 2θ and containing (K – k) zeros.

Finally, we obtain the mathematical model of the combined adjustment of the terrestrial

geodetic and passive GNSS networks in the NSRS in the following form [16, 20]:
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.
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RP,LΩ.δωτδV

KμP,δτV

ð17Þ

where the vector of spatial coordinate corrections τδˆ has the form (13).

It should be underlined that at present we can determine the seven coordinate transformation

parameters of Bursa-Wolf formula
T(0)(0)

Z

(0)

Y

(0)

X

(0)

0

(0)

0
,

(0)

0

(0)
)Δm,ε,ε,ε,Z,Y(Xω with very

high accuracy. In this case, the variance-covariance matrix ,
1

S

2

SS .RμK obtained after the

separate adjustment of the passive GNSS network in the ITRF is considered to be unchanged in

the process of the transformation of spatial coordinates of GNSS points from the ITRF into the

NSRS. Therefore, the weight matrix SS RP is assigned to the second subsystem of observa-

tion equations in (17).

System of observation equations (17) has all K + 3 unknown parameters. A study of the method of

Givens rotation for solving this system of observation equations is performed in Subsection 2.4.

2.2. Brief description of the method of recurrent adjustment of geodetic network with

Givens rotation

To obtain the best linear unbiased estimate of unknown parameters by the least squares

method, we must adopt an outlier detection method for geodetic observations in geodetic

networks. In [29], a method of recurrent adjustment of geodetic networks had been developed,

which allows for the detection of outliers in the calculation process and is realized by the

following procedure: A recurrent adjustment process is performed sequentially for every

measured value in combination with outlier detection method for redundant measurements.

Because the method of recurrent adjustment is working with an inverse matrix Q related to a

normal matrix R by the formula ,
1

RQ this method is called as “Q – recurrent algorithm.”

First, we will investigate the method of recurrent adjustment of geodetic networks containing

n independent measurements and k unknown parameters. For the ith measured value

iy (i = 1,2,…,n), its adjusted value
iii vyy~ is related to the adjusted vector of unknown
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parameters δXXX
(0)~ by a function ,

~~ )X(y
ii

where iv - is correction (residual) to the ith

measured value ;iy
(0)
X  - is vector of approximate values of the unknown parameters with

dimension k � 1; δX  - is vector of corrections to the vector (0)
X with dimension k � 1; k –

number of unknown parameters.

After performing the Taylor linear expansion, we obtain the observation equation of the ith

measurement iy in the following form:

,
(0)

iiii lX.av ð18Þ

according to weight ,ip where ia - row vector of coefficients with dimension 1 � k;

i

(0)

i

(0)

i y)(Xl - free component.

For the every ith measured value ,iy inserted in recurrent adjustment process, we will calculate

an inverse matrix iQ of the order of k x k, vector of corrections i
δX and value .ii

PV]
T

[VΦ

To start the recurrent adjustment process, we obtain:

the initial inverse matrix ,kxk

m

0 .E10Q

initial vector of corrections ,0δX0

initial value ,0PV][VΦ 0

T

0

where the number m is equal to 6 andd kxkE is the identity matrix of the order of k � k.

It is assumed that after performing the recurrent adjustment process for (i � 1) first measured

values, we have obtained the inverse matrix ,1iQ vector of corrections 1iδX and value

.1i1i
PV]
T

[VΦ The recurrent adjustment process for the ith measurement iy with the

observation equation (18) will be performed by the following way:

,

,
i

i
g

T
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where the vector

,
T

i1i

T

i .aQZ

the free component

ð19Þ

The number ig is an inverse weight of the free component il and is calculated by the formula:

.
T

ii

1

ii
.Zapg ð20Þ

The ith measurement iy will be recognized as the redundant measurement, if number ig

satisfies the condition
i

i
p

100
g [30]. When iy is the redundant measurement, the outlier detec-

tion will be performed based on the comparison of the free component il with its limitation

,i0limi g.3.μ)(l where 0μ - is the RMS error of measurements determined apriori. If limi )(l >

,il then we have base to accept an assumption that in the first i measured values outliers exist.

In the case of the absence of any outliers in the geodetic network, after accomplishment of the

recurrent adjustment process for n measurements, the vector of adjusted parameters X
~ and the

RMS error of weight unit μ after adjustment of the geodetic network have been calculated by

the following formulas:

,
~

n

(0)
δXXX ð21Þ

.

kn

Φ
μ

n ð22Þ

Although the recurrent algorithm Q has the ability to detect outliers in recurrent adjustment

process, the inverse matrix Q is a full matrix that leads to a decrease in the efficiency of the

adjustment of a large geodetic network. The method of Givens rotation becomes efficient in

case of using a sparse matrix technique [12]. In [13], the usage of Givens rotation method had

been proposed for the adjustment of large geodetic networks. The method of Givens rotation

allows the transformation of the elements of the coefficients matrix nxkA in the system of

observation equations to the elements of an upper triangular matrix kxk
T related to the normal

matrix R by the formula .TTR
T

On an account of abilities of the method of recurrent adjustment for outlier detection in

recurrent adjustment process and the method of Givens rotation for using the technique of a

sparse matrix, in [15], a method of recurrent adjustment with rotation that had been

constructed based on the method of Givens rotation had been proposed by using the technique
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of sparse matrix and has been performed in the procedure of recurrent adjustment process

with outlier detection. This method is called as “T – recurrent algorithm”with an initial matrix

of 0T of the recurrent adjustment process represented in the following form:

,kxk

m

0 .E10T ð23Þ

where the number m is equal to 6; kxkE - is identity matrix of order k; k is number of unknown

parameters.

It is necessary to underline that for the method of Givens rotation, a transformation of every

element of the row vector of coefficients ia in the observation equation (18) requires four

multiplications. For a method of fast rotation proposed in [10], the transformation of every

element of the row vector of coefficients ia in the observation equation (18) requires two

multiplications. However using the initial matrix 0T (23) for starting the recurrent adjustment

process, the method of fast rotation leads to an increase of the transformed elements of the

upper triangular matrix .
kxk
T That is why in [17] it had been proposed that the method of

mean rotation for that in the recurrent adjustment process the transformation of every ele-

ment of the row vector of coefficients ia in the observation equation (18) requires three

multiplications. For the method of mean rotation, the upper triangular matrix kxk
T is

represented in the form ,T̂D.T
kxk

where D is a diagonal matrix containing diagonal ele-

ments of the upper triangular matrix ,
kxk
T T̂ is an upper triangular matrix with unit diagonal

elements.

In this chapter, we carry out a research on the usage of T - recurrent algorithm for the recurrent

adjustment of geodetic networks containing n independent values of measurements. We sym-

bolize Y as the vector of transformed free components related to the vector of corrections δX

by the system of equations.

.YXT. ð24Þ

For starting the recurrent adjustment process, we get the initial matrix 0T form (23), initial

vector of transformed free components 0Y0 and initial value .0PV]
T

[VΦ 00
It is

assumed that after performing the recurrent adjustment process for the first (i � 1) values of

measurements, we have obtained an upper triangular matrix ,1iT a vector of transformed free

components 1iY and a value .1i1i
PV]
T

[VΦ

For sequential insertion of the ith measured value iy with the observation equation (18) in the

recurrent adjustment process, we will create auxiliary matrix (0)
B with dimensions (k + 1)

� (k + 1) in the following form ([15], [18]):
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( ) ( )

.

0

iiii

1i1i
(0)

lpap

YT

B ð25Þ

We symbolize ),..,2,1( kjjb as jth row of matrix (0)
B (25), )0( as )1(k th row of matrix (0)

B

(25). A rotation transformation will be sequentially performed from row 1b to row kb of the

matrix .
(0)
B It is assumed that after performing rotation transformation on first (j� 1) rows, we

have got the matrix 1)(j
B with (j � 1) transformed rows and transformed )1(k th row .

1)(j
ξ

For the rotation transformation of jth row jb of matrix ,
1)(j

B we build a rotation matrix jH in

underrepresented form (26). The elements jC aand jS of the rotation matrix jH are calculated

by the following formulas:

,
f

)(b
C

jj

j ,
f

ξ
S

1)(j

j

j

where jj
)(b is the jth element of row ;jb

1)(j

j
ξ is the jth element of the )1(k th row ;

1)(j
ξ

.
2

1)(j

j

2

jj ξ)(bf

The elements jC and jS of the rotation matrix jH are located on the jth and )1(k th rows as

well as on the jth and )1(k th columns as represented in form (26).

Multiplying matrix 1)(j
B on the left by the rotation matrix ,jH we will obtain the transformed

matrix (j)
B that is.

.
(0)

.
1

...
1j

.
j

1)(j
.
j

(j)
BHHHBHB

.

1k1k

jj

.................................................................................

jjj

C..0..S...00

0..1..0...00

S..0..C..00

................................................................

0..0..0..10

0..0..0..01

H ð26Þ
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By such a way after the accomplishment of rotation transformation of all k rows of the matrix
(0)
B (25), we obtain the transformed matrix

,
~ 0(k)

B1H1kHkHBB ð27Þ

which has the following form:

.
~

i

ii

ΔΦ0

YT

B ð28Þ

When .
i1iii

ΔΦΦPV]
T

[VΦ With the purpose of the outlier detection for the ith

measurement ,iy which is a redundant measured value, we will calculate a vector it from the

system .
T

ii

T

1i atT The free component il (19) and its inverse weight ig (20) are calculated by

the following formulas [15, 18]:

.

,

i

T

i

1

i

0

i1i

T

ii

ttpig

lYtl

The outlier detection will then be performed by a way, analogous to the Q – recurrent algo-

rithm. After the accomplishment of the recurrent adjustment process for the n measured

values, the vector of corrections is calculated from the system of equations (24). The vector

of adjusted parameters X
~ and the RMS error of weight unit μ after the adjustment of the

geodetic network are then calculated by formulas (21), (22).

The correctness of the form (28), obtained from Givens rotation, can be checked by the follow-

ing way [15, 18]. It is assumed that for the first (i-1) measured values in a geodetic network, we

have a system of observation equations in the following form:

(0)

1i1i1i1i LX.AV ð29Þ

with a weight matrix .1iP

Solving the system of observation equations (29) by the least squares method, we obtain the

system of normal equations:

,0bX.R 1i1i1i
ð30Þ

where
1i1i

T

1i1i .A.PAR is the normal matrix and
(0)

1i1i

T

1i1i .L.PAb is the vector of free

components of the system of normal equations.
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After the Cholesky decomposition, the system of normal equations (30) has been transformed

into a system of equivalent equations:

,

,

1i1i1i

1i1i

T

1i

YX.T

b.YT
ð31Þ

where 1iY is the vector of transformed free components, 1iT is the upper triangular matrix

obtained from the Cholesky decomposition .1i
T

1i1i .TTR

From formula (31), we can obtain the following value:

.1i
T

1i1i

T

1i

T

1i

T

1i .YY.bδX).bX( ð32Þ

On an account of the formulas (30) and (32) from (29), we will obtain a following value:

.1i
T

1i

(0)

1i1i

T
(0)

1i1i1i

T

1i1i .YY.L.PL.V.PVΦ ð33Þ

Now after insertion of the ith measured value iy with the observation equation (18) in the

adjustment process, we will obtain some known relations:

.

,

(0)

i

T

ii1i

T

1i

(0)

i

T

ii1iii

T

i

i

T

ii1i

T

1ii

T

ii1ii

T

ii

.l.ap.YT.l.apbb.YT

.a.ap.TT.a.apR.TTR

ð34Þ

By an analogous way to formula (33), we have

.i
T

i

(0)

ii

T
(0)

iii

T

ii .YY.L.PL.V.PVΦ ð35Þ

On an account of the relation ,
2(0)

ii

(0)

1i1i

T
(0)

1i

(0)

ii

T
(0)

i ).(lp.L.PL.L.PL from formulas (33)

and (35) will be inferred the following value:

.1i

T

1ii

T

i

2(0)

ii1iii .YY.YY).(lpΦΦΔΦ ð36Þ

Because the rotation matrix jH (26) is the orthogonal matrix that satisfies the condition

,1)1)x(k(kj

T

j E.HH where 1)1)x(k(kE is the unit matrix of the order of (k + 1) � (k + 1), from

formula (27), we obtain the following relationship:

.
~~ (0)T(0)T

.B)(BB.B ð37Þ

Substituting (0)
B (25) and B

~ (28) into (37), we obtain the known formulas (34) and (36). That

proved the correctness of the form (28), obtained from Givens rotation after the insertion of the

ith measured value iy with the observation equation (18) in the recurrent adjustment process.
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In the case outliers exist in the geodetic network, we will determine the corrections vector (0)
V

for n measurements that will be used for finding outliers. A method for finding outliers is

investigated in Subsection 2.3.

2.3. Method for finding outliers in the geodetic network

In case the dispersion of measurements has not been derived confidently and has been

changed in whole measurement process, i. e. 0 ≤ < ∞, errors of measurements obey a Laplace

distribution [32]. In this case apart from random errors, errors of measurements still consist of

gross errors and as the maximum likelihood estimate, the least absolute residuals (LAR)

estimate will be established under the following L1 - norm condition:

,minv
n

1i
i ð38Þ

where ;iii .vpv ip is the weight of ith measurement ;iy iv is the correction (residual) to this

ith measurement and i = 1,2,…,n.

The LAR method is more efficient in estimating the parameters of the regression model; in the

case, the data are contaminated with gross errors. The LAR method has the ability of resisting

against blunders (outliers) [39]. Accounting for the popularity of the calculation schema by the

least squares method, in [11] had been proposed an iteratively reweighted least squares (IRLS)

method, through which condition (38) is represented in the form:

n

1

2

ii

n

i
i

i
minvp

1
v , ð39Þ

where weight .
i

i
v

1
p

In [5], a convergence of the iterative calculation process by the IRLS method and a diminution

of amplitude of absolute residuals after every iteration under the condition had been proven

(39). The experiments show that the IRLS method allows outliers to be found reliably only for

such dense geodetic networks with large number of redundant measurements such as tradi-

tional triangulation, the GNSS network and the vertical network created by leveling lines

between nodal benchmarks [18].

First, we symbolize m as the number of iterations ,...).2,1,0(m As presented in Subsection

2.2, after adjusting the geodetic network by the T- recurrent algorithm with the discovery of

existence of outliers in the geodetic network, we have calculated the vector (0)
V of corrections

to n measurements that will be used for the iterative adjustment of the geodetic network by the

IRLS method in order to find outliers. In the m th iteration, based on the condition (39) for the

ith measurement iy the observation equation (18) will be expressed in the following form:
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(0)

i

)m(

ii

)m(

i lX.av ð40Þ

with weight
,

1)m(

i

)m(

i
v

1
p

where
i
a.pa
ii

is the row vector of coefficients;
(0)

i

(0)

i l.
i
pl

is the free component; ,
1)m(

i

1)m(

i
.v
i
pv and

1)m(

i
v are the correction for the ith mea-

surement iy which is obtained in previous (m�1) th iteration; i
p is the weight of the ith

measurement .iy

The observation equation (40) will be sequentially inserted in the recurrent adjustment process

by the T- recurrent algorithm. After the accomplishment of mth iterative recurrent adjustment

of the geodetic network with n measured values, we will calculate the vector of the adjusted

parameters )m(
X
~ in the m th iteration by the formula .

~ )m((0))m(
XX The vector )m(

X
~

will be used for the determination of the vector )m(
V of corrections to n measured values

serving next (m +1) th iterative recurrent adjustment of the geodetic network.

A process of the iterative recurrent adjustment of the geodetic network will be ended, if in two

(m -1)th and m th adjacent iterations for all residuals satisfy the following condition:

,εvv
1)(m(m)

where ε is a small positive number. The outliers can be found from the measured values which

have the largest residuals (corrections).

2.4. Application of the recurrent adjustment method with Givens rotation for separate

adjustment of GNSS network in the ITRF and next its combination to the NSRS

For the GNSS network comprising NP GNSS points, the components ΔZΔY,ΔX, of baseline

vectors are used as pseudo-observations for the adjustment of this network. It is assumed that

the GNSS network contains N baseline vectors. We symbolize iY ),...,2,1( Ni as the vector of

pseudo-observations between two GNSS points .hs, Additionally,

i

i

i

i

ΔZ

ΔY

ΔX

Y ð41Þ

with variance-covariance matrix iC of the order of 3. That means that iii
ΔZ,ΔY,ΔX are

dependent observations to which the system of observation equations corresponds in the

following form:
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(0)
L

i
H.AV iii

,     ð42Þ

where iV is a vector of corrections (residuals) to the measured values iii
ΔZ,ΔY,ΔX in the

vector of pseudo-observations iY (41). The matrix of coefficients with dimension 3 x K (K = 3.

NP – total number of unknown parameters in the GNSS network) has the form:

additionally 1a (�1 0 0 ... 1 0 0), 2a (0 –1 0 ... 0 1 0), 3a (0 0 –1... 0 0 1); i
δH is a vector of

unknown corrections to approximate spatial coordinates of GNSS points in the ITRF, obtained

after the insertion of ith vector of pseudo-observations iY (41) in the recurrent adjustment

process;
(0)

iL
is a vector of free components which has form:

,

i

(0)

s

(0)

h

i

(0)

s

(0)

h

i

(0)

s

(0)

h

(0)

i

ΔZZZ

ΔYYY

ΔXXX

L

where
(0)

s

(0)

s

(0)

s Z,Y,X and
(0)

h

(0)

h

(0)

h Z,Y,X are the approximate spatial coordinates of the

GNSS s and h.

A weight matrix iP of the order 3 is assigned to the vector of pseudo-observations i
Y (41) and

represented in form:

,
1

i

2

0i CμP ð43Þ

where 0μ is the RMS of unit weight determined apriori.

As we had seen in Subsection 2.2, with the purpose of outlier detection, the recurrent adjust-

ment method is effectively realized for independent observations. The components

iii
ΔZ,ΔY,ΔX are the dependent observations. Therefore, for the application of the recurrent

adjustment method, we must transform the dependent observations iii
ΔZ,ΔY,ΔX to the

independent ones. For that, we represent the weight matrix iP in the form ,
i

.
T

ii UUP and the

system of observation equations (42) will be expressed as [20]:
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,
(0)

iiii LH.AV ð44Þ

where i.ViUiV ,
iii .AUA , 

(0)

i

(0)

i
.LiUL .

By such a way, the system of observation equations (44) has a unit weight matrix ,
3x3i
EP

where 3x3
E is the unit matrix of the order of 3 x 3. In [20], an algorithm for a transfor-

mation of a matrix i
2

0

C

μ

1

in formula (43) to an upper triangular matrix i
U of the order of 3

had been proposed by the following way. We arrange the elements of the matrix i
2

0

C

μ

1

in turn

by columns in array C of length 6. After the performance of operations sequentially by the

below represented procedure:

C(3);C(1).C(2).C(2);

C(4)C(2)C(1)

1
C(1)

.C(3);C(4).C(5)C(2)C(2);

C(5)C(3)

1
C(3)

C(4).C(6);C(4)C(5).C(6);C(5);C(6)1/C(6)

22

2

,C(6)C(3).C(5).C(5).C(6);C(2).C(5)C(1).C(4)C(4)

wewill obtain corresponding elements of the upper triangular matrix i
U arranged by columns.

Before the separate adjustment of the GNSS network, we ought to choose one GNSS point to

be “a fixed point” that has spatial coordinates in both the ITRF and the NSRS. Without losing

generality, this fixed point is numbered with the number sign 1. Based on a method of a

temporary fixation of an initial point, proposed in [18], an inverse weight matrix FQ of the

spatial coordinates of the fixed point in the ITRF is accepted to be ,3x3

2m
.E10 that is.

,3x3

2m

F
.E10Q ð45Þ

where number m is equal to 6, 3x3
E -unit matrix of the order of 3 � 3.

The choice of a fixed point guarantees the nonsingularity of normal matrix obtained in a

process of the adjustment of the GNSS network. Below, we will prove that after the combined
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adjustment of terrestrial geodetic and GNSS networks, the temporary fixation of the initial

point will be automatically eliminated.

To start the separate adjustment of the GNSS network in the ITRF, on an account of formula

(45), we obtain an initial upper triangular matrix 0
)S(T of the order of K for the recurrent

adjustment process in the following form:

.(

3)3)x(K(K

m

3x3

m

0
)S

.E100

0.E10

T

The recurrent adjustment process will be realized by the T- recurrent algorithm sequentially

for every observation equation from the system of observation equations (44). The outlier

detection will be performed if the ith vector of pseudo-observations iY (41) is redundant.

After the accomplishment of the separate adjustment of the GNSS network with the insertion

of all N vectors of pseudo-observations in the form (41) in the recurrent adjustment process by

the T-recurrent algorithm, if outliers are encountered in the network, we will perform outlier

detection using the method represented in Subsection 2.3.

If the GNSS network does not contain outliers, the obtained upper triangular matrix NSS )(TT

of the order of K will be related to the normal matrix SR in the system of observation equations

(17) by the formula .
S

T

SS .TTR Therefore for the combined adjustment of the terrestrial geo-

detic and GNSS networks with the solving of the system of observation equations (17) by the T-

recurrent algorithm, second subsystem of observation equations in (17) will be expressed in the

form:

,ˆ
Kx1

S

3x1Kx1

SS

Kx1

S Lω.Ωτ.δTV ð46Þ

where ;
SSS

;
S

;
Kx1

SS

Kx1

S .LTL.ΩTΩ.VTV
S
T is the upper triangular matrix obtained

from the separate adjustment of the GNSS network in the ITRF.

The usage of the T-recurrent algorithm for solving the system of observation equations (17) has

the remarkable advantage of being very simple for solving the subsystem of observation

equations (46), created based on the transformation of the results of the separate adjustment

of the GNSS network from the ITRF into the NSRS.

The subsystem of observation equations (46) has a unit weight matrix
KxKS
EP of the order

of K. To start the combined adjustment of the terrestrial geodetic and GNSS networks in the

NSRS by the T-recurrent algorithm, we obtain an initial upper triangular matrix 0
T with the

order of K + 3 of the recurrent adjustment process in the following form:
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,

KxK

m
0

.E100

0
kxk
τ
T

T ð47Þ

where an upper triangular matrix
kxk

τ
T is related to weight matrix τ

P of the first subsystem of

observation equations in (17) by the formula
τ

T

ττ
.TTP order k.3KK

The task of the combined adjustment of the terrestrial geodetic and GNSS networks in the

NSRS will be performed by the T-recurrent algorithm based on a sequential insertion of

observation equations from the subsystem of observation equations (46) in the recurrent

adjustment process with the usage of the initial matrix 0
T (47). Because the outlier detection in

the GNSS network had been performed in the process of the separate adjustment of this

network, then in the process of solving the abovementioned task, the outlier detection will be

performed for the data of terrestrial geodetic network. The results of the combined adjustment

of the terrestrial geodetic and GNSS networks in the NSRS will be performed by the T-

recurrent algorithm determined by the formulas (21), (22), (24) represented in Subsection 2.2.

For the end of this subsection, we prove that performing the separate adjustment of the GNSS

network in the ITRF, the temporary fixation of an initial point by assigning the inverse matrix

`FQ (45) to the spatial coordinates of the fixed point will be automatically eliminated after the

combined adjustment of the terrestrial geodetic and GNSS networks.

It is assumed that for all N baseline vectors in the GNSS network, a system consisting of 3.N

observation equations has been created in the following form:

(0)
LHA.V ð48Þ

with weight matrix P.

Solving the system of observation equations (48) under condition minPVV
T we obtain a

normal matrix .ˆ PAAR
T

S
If in the GNSS network there is not any fixed point, that is, the

GNSS network becomes the free network, then the normal matrix
SR̂ will be singular due to

the rank defect d = 3. In this case, the matrix of coefficients Awith dimension 3.N � K has the

rank defect d = 3 and satisfies the condition:

,0A.Ω ð49Þ

where matrix has the form (16) with K = 3.NP rows and 3 columns.

For the strict separate adjustment of the GNSS network in the ITRF and avoiding the singularity of

the normal matrix ˆ
SR , on an account of the formula (45), we performed the above represented

method of the temporary fixation of initial point with an additional usage of system of observation
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equations
1

H.EV
1F to which the weight matrix 3x3

2m1

FF
.E10QP has been assigned,

where
1

E is the unit matrix of the order of 3;
1

δH is the subvector of corrections to the spatial

coordinates of the fixed point with number sign 1 of the GNSS network. In this case the separate

adjustment of the GNSS network in the ITRF will be accomplished based on simultaneous solving

the above mentioned system of observation equations with the system of observation equations

(48) under the condition .minPVVVPV
T

FF

T

F As a result, we obtain the normal matrix.

,ˆˆ
FSS

PRR ð50Þ

where the matrix
F

P̂ has the form:

ˆ

KxK

3x3

F

F
00

0P

P ð51Þ

As mentioned in Subsection 2.1, the normal matrix SR (50) is used as the weight matrix SP

assigned to the second subsystem of observation equations in (17).

On an account of (49), the product .ˆ 0.ΩRS
When we get relationship from (50):

.ˆ
T

F
.

F
.

S
...00PΩPΩR ð52Þ

Therefrom we infer the equality:

ˆ
F

.
F

T
.

S

T
PΩP.ΩΩ.RΩ ð53Þ

Now performing the combined adjustment of the terrestrial geodetic and GNSS networks in

the NSRS with solving the system of observation equations (17) under the condition

,min.V.RV.V.PV.V.PV.V.PV SS

T

Sττ

T

τSS

T

Sττ

T

τ
where normal matrix SR has the form

(50), we obtain a system of normal equations in the following form:

.
ˆ

SS

S

T

S

T

RτP.ΩR

.RΩ.Ω.RΩ

S
τδ

δω

ˆ
+

SS

SS.
T

.LR

.LRΩ

=  0
ð54Þ

Additionally, the matrix τP̂ has the form:
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.ˆ

KxK

kxk

τ

τ
00

0P

P

For the system of normal equations (54), substituting )SLτ.(δ.R.Ω.Ω.RΩδω SS

T
1

S

T ˆ

inferred from the first subsystem of normal equations into the second subsystem of normal

equations, we will obtain a transformed system of normal equations in the form:

ð55Þ

On an account of the formulas (16), (50), (51), (52), (53) we obtain:

.ˆˆˆˆˆˆˆˆ
SFFS

T

F

T1

FFFSS

T
1

SSS RPPRP..Ω.P.PPR.R.Ω.Ω.R
T

Ω.ΩRR ð56Þ

Finally, substituting (56) into (55), we obtain the following system of normal equations:

,ˆˆˆˆ 0.LRτ.δRP
SSSSτ

in which the effect of the temporary fixation of an initial point, made in the process of the

separate adjustment of the GNSS network in the ITRF, fully has been eliminated.

It can be concluded that the usage of the method of the temporary fixation of initial point for

the strict separate adjustment of the GNSS network in the ITRF and avoiding the singularity of

the normal matrix
SR̂ does not cause any influence on the results of the combined adjustment

of the terrestrial geodetic and GNSS networks in the NSRS. Moreover, this method allows the

spatial coordinates of the initial point be corrected after the abovementioned combined adjust-

ment. We will lose valuable priori information regarding the spatial coordinates of the initial

point of the GNSS network for the accuracy improvement of the national spatial coordinates of

GNSS points in the NSRS, if the spatial coordinates of the abovementioned initial point of the

GNSS network are considered to be nonerroneous.

3. Experimental results

3.1. Data

In [22], the results of the construction of the initial national spatial reference system VN2000–

3D on the base of the orientation of the WGS84 ellipsoid to best fit it to the Hon Dau local
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quasigeoid at tide gauge Hon Dau with using the most stable 164 colocated GPS observations

performed at the first- and second-order benchmarks had been presented. The GPS data had

been processed in the ITRF2008 in the period 2009–2010. The coordinate transformation

parameters from the ITRF to the VN2000–3D have the following values:

.0400462723,".0085600577,".0011168229,  ".0

,417880,111,192468,42204,511083
000

m

mZmYm,X

ZYX

In [24], the results of the construction of the initial national quasigeoid model VIGAC2017 with

the accuracy level of �5.8 cm had been presented.

From 11 to 14 November 2013, Vietnam Institute of Geodesy and Cartography (VIGAC) had

accomplished four sessions of 24 h GPS observations at 11 points of the GPS network in the

North Vietnam (see Figure 1). Average distance between GPS points is 105 km. The GPS data

had been processed in the ITRF2008 by the software Bernese v. 5.2 using IGS service products.

The GPS network has five common (ground control) points C052, C022, C045, C033, C004, that

have the approximate national spatial coordinates in VN2000–3D (see Table 1) and have been

numbered sequentially from 1 to 5. In Vietnam, horizontal coordinates of geodetic points are

determined in VN2000-2D, and their normal heights are determined in national the vertical

reference system Haiphong1972 (HP72). On an account of the national quasigeoid model

VIGAC2017, the RMS of the national ellipsoidal coordinates of the geodetic points had been

considered equal to 097.0;0015".0;002".0 mmmm
HLB After expressing the LB

mm ,

in the radian unit, we had created the variance–covariance matrix
3x3

HL,B,K , that is considered

equivalent to the abovementioned five common points. From that for every common point, we

had created the variance–covariance matrix
T3x3

HL,B,

3x3

XYZ
.χχ.KK , where.

,

sinB0H).cosB(ρ

cosB.sinLsLH).cosB.co(ρnLH).sinB.si(ρ

cosB.cosLnLH).cosB.si(ρsLH).sinB.co(ρ

χ

M

NM

NM

is the radius of curvature in the meridian plane; N
ρ is the radius of curvature in the first

vertical plane.

On the basis of the algorithm of transformation of the variance-covariance matrix to the upper

triangular matrix, represented in Subsection 2.4, we had got the upper triangular matrices for

five common points in the NSRS in the following forms:
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074403.000

182105.0057491.00

713919.02999733.0112708.0

;

074068.000

179161.0057843.00

678800.0291820.0112997.0

21
TT

074115.000

179026.0057659.00

716235.0306647.0113212.0

;

074355.000

182140.0057661.00

680706.0287024.0112522.0

43
TT

.

073903.000

176483.0057674.00

750297.0325441.0113795.0

5
T

Figure 1. The GPS network in the North Vietnam.

Accuracy of GNSS Methods134



These upper triangular matrices will be used for creating the submatrix
1515x

T in the initial

upper triangular matrix in the form (36) with the purpose of the combined adjustment of the

GPS network, shown in Figure 1, into VN2000–3D.

3.2. Results

In [28], the experiments of the combined adjustment of the GPS network, shown in Figure 1, in

VN2000–3D had been accomplished. The GPS network had been adjusted separately in the

ITRF2008 by the T-recurrent algorithm with the temporary fixation of an initial point for GPS

point C052. The adjusted spatial coordinates of all 11 GPS points had been transformed from

the ITRF2008 to VN2000–3D (see Table 2).

The last spatial coordinates of all 11 GPS points in VN2000–3D obtained after the combined

adjustment of the GPS network in VN2000–3D based on insertion of the system of observation

equations in the recurrent adjustment process by the T–recurrent algorithm are shown inTable 3.

No Points )0(
X (m) 

)0(
Y (m) 

)0(
Z (m) 

1 C052 �1513714.080 5735121.312 2337092.905

2 C022 �1472179.140 5771490.861 2274632.888

3 C045 �1538604.194 5750184.888 2283824.115

4 C033 �1439254.730 5758082.565 2328258.478

5 C004 �1355466.208 5762595.543 2367026.437

6 C049 �1473387.470 5720475.157 2397685.449

7 C065 �1576880.962 5710639.604 2355075.723

8 C056 �1592782.951 5745126.896 2259055.940

9 C014 �1564014.757 5782717.956 2183131.028

10 C075 �1723353.397 5702825.750 2270215.032

11 C070 �1710134.998 5667162.050 2367393.077

Table 2. Spatial coordinates of all 11 GPS points had been transformed from the ITRF2008 to VN2000–3D.

No Common (ground control) points Approximate spatial coordinates in VN2000–3D

Xτ

(0) (m) Yτ

(0) (m) Zτ

(0) (m)

1 C052 �1513714.136 5735121.344 2337092.916

2 C022 �1472179.244 5771490.833 2274632.893

3 C045 �1538604.244 5750184.813 2283824.080

4 C033 �1439254.798 5758082.515 2328258.441

5 C004 �1355466.287 5762595.502 2367026.391

Table 1. Approximate national spatial coordinates of the ground control pointsC052, C022, C045, C033, C004 inVN2000–3D.
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The mean values of the RMS of national ellipsoidal coordinates of GPS points after solving the

task of the combined adjustments of the GPS network in VN2000–3D are equal to

.023.0;0005".0;0007".0 ~~~ mmmm
HLB

That confirmed the significant improvement of

positional accuracy of the GNSS points in the NSRS after solving of the task of the combined

adjustments of the GNSS network in the NSRS.

4. Conclusions

A tendency of construction of the NSRS strongly is promoted in many countries in the world

due to development of the passive GNSS networks, comprising the ground control points and

some CORS stations, based on the GNSS methods and results of building of the highly

accurate national geoid/quasigeoid models at the centimeter level of accuracy thanks to

detailed gravimetric data and the Earth gravitational models with high resolution.

From demands of usage of the high accurate spatial coordinates of GNSS points in the ITRF for

different geodetic applications and next their usage for the construction of the national spatial

reference frame has been arisen techno-scientific task of the separate adjustment of the passive

GNSS network in the ITRF and next its combined adjustment with the terrestrial geodetic net-

work in the NSRS.

In this chapter, a recurrent adjustment method with Givens rotation had been represented for

solving the above mentioned task on an account of its abilities to use the technique of sparse

matrix, to detect outliers in the recurrent adjustment process and to find them, especially to use

effectively results of the separate adjustment of the passive GNSS network in the ITRF for

No Points ~X (m) ~Y (m) ~Z (m)

1 C052 �1513714.150 5735121.372 2337092.873

2 C022 �1472179.207 5771490.916 2274632.850

3 C045 �1538604.253 5750184.910 2283824.046

4 C033 �1439254.784 5758082.567 2328258.392

5 C004 �1355466.267 5762595.567 2367026.370

6 C049 �1473387.532 5720475.185 2397685.386

7 C065 �1576881.025 5710639.642 2355075.670

8 C056 �1592783.012 5745126.934 2259055.888

9 C014 �1564014.818 5782717.991 2183130.973

10 C075 �1723353.458 5702825.780 2270214.971

11 C070 �1710135.062 5667162.086 2367393.020

Table 3. Final spatial coordinates of all 11 GPS points in VN2000–3D after the combined adjustment of the GPS network.
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creating the system of observation equations (46) and its realization in the process of the com-

bined adjustment of the passive GNSS networkwith the terrestrial geodetic network in theNSRS.

In this chapter, the method of the temporary fixation of an initial point used for the separate

adjustment of the passive GNSS network in the ITRF had been represented. The

abovementioned temporary fixation of an initial point allows not only to perform the strict

adjustment of the passive GNSS network in the ITRF and to avoid the singularity of

transformed matrix but also to correct the spatial coordinates of fixed point after the combined

adjustment of the GNSS network in the NSRS. Additionally, the temporary fixation of the

initial point does not cause any influence to the results of the above represented combined

adjustment.

The results of experiments performed on the basis of the usage of the T-recurrent algorithm for

the separate adjustment of the GPS network in the North Vietnam and the its combined

adjustment into VN2000–3 D confirmed the significant improvement of positional accuracy of

the GPS points in VN2000–3 D and effectivity of the T-recurrent algorithm in mathematical

processing of the GPS network for the construction of the national spatial reference frame.

Apart from that, after the combined adjustment of the GPS network in VN2000–3 D, the

horizontal and vertical position accuracy of the GPS points had reached the few centimeter

level. The mean values of the RMS of national ellipsoidal coordinates of GPS points after

solving task of the combined adjustments of the GPS network in VN2000–3D are equal to

mmmm
HLB

023.0;0005".0;0007".0 ~~~  ./.
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