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Abstract

Oncolytic virotherapy is a cancer treatment that uses competent replicating
viruses to destroy cancer cells. This field progressed from earlier observations of
accidental viral infections causing remission in many malignancies to virus drugs
targeting and killing cancer cells. In this chapter, we study some basic models of the
oncolytic virotherapy and their dynamics. We show how the dynamical system’s
theory can capture the behavior of the solutions of those models and provide
different approaches to studying the models. We study the thresholds that enable us
to classify asymptotic dynamics of the solutions. Fractional-derivative approach
tells us about the memory of the derivative and related solutions of the models. We
also study the affect of introducing control parameters on the cost of the therapy.
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Immunotherapy

1. Introduction

Oncolytic viruses are a form of immunotherapy that uses viruses to infect and
destroy cancer cells. These viruses can selectively replicate in cancer cells but leave
healthy normal cells largely intact. In oncolytic virotherapy, the free viruses infect
tumor cells and replicate themselves in tumor cells; upon analysis of infected tumor
cells, new virion particles burst out and proceed to infect additional tumor cells.
This idea was initially tested in the middle of the last century and merged with
renewed ones over the last three decades due to the technological advances in
virology and in the use of viruses as vectors for gene transfer. Over the last decade,
great efforts have been made for understanding dynamics and molecular mechanics
of viral cytotoxicity of oncolytic viruses. Those efforts provided an interesting
possible alternative therapeutic approach to help cure cancer patients. However, the
outcomes of virotherapy depends in a complex way on interactions between viruses
and tumor cells [1]. One of the main advantages of applying the oncolytic
virotherapy is that it can selectively damage cancerous tissues leaving normal cells
unharmed. In addition, oncolytic viruses can mediate the killing of the normal cells
by indirect mechanisms such as the destruction of tumor blood vessels, the ampli-
fication of specific anticancer immune responses or through the specific activities of
transgene-encoded proteins expressed from engineered viruses.

During the last two decades, several mathematical models have been applied to
understanding oncolytic virotherapy. For example, Wu et al. [2] and Wein et al. [3]
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proposed and analyzed some partial differential equations models to study some
aspects of cancer virotherapy. For ordinary differential equations models, Wodarz
in [4, 5], Komarova and Wodarz [6], Novozhilov et al. [7], and Bajzer et al. [8],
Tian in [9, 10], and others. Wodarz and Komarova [11] have modeled the dynamics
of the oncolytic virus replication by ordinary differential equations that describe the
development of the average population sizes of cells and viruses over time. For this
purpose, they used a generalized approach and considered a class of models instead
of a specific model and took into account two populations: uninfected tumor cells,
denoted by x and infected tumor cells, denoted y. The general model is based on the
law of mass action and is given by

dx

dt
¼ xF x, yð Þ � βyG x, yð Þ

dy

dt
¼ βyG x, yð Þ � ay,

(1)

where the function F describes the growth properties of the uninfected tumor
cells, and the function G describes the rate at which tumor cells become infected
by the virus. The two functions can take several forms depending on the
biological content and meaning that we may want to incorporate into the model.
The parameter β represents the infectivity of the virus, and the death rate ay
represents the virus-infected cells die.

Then, a three populations model was introduced by Wodarz [12] as

dx

dt
¼ rx 1� xþ y

C

� �

� dx� βxv

dy

dt
¼ βxv� dþ að Þy

dv

dt
¼ αy� γv,

(2)

in which v stands for the free virus population and C is maximal tumor size. The
term αymodels the release of virions by infected tumor cells, and γv is the clearance
rate of free virus particles by various causes including non-specific binding and
generation of defective interfering particles. The death rate of tumor cells dx seems
redundant, since it is included in the logistic model.

2. A basic model of oncolytic virotherapy

Tian [10] has proposed a modified model where the burst size was incorporated.
The burst size of a virus is the number of new viruses released from a lysis of an
infected cell. It us known that different types of viruses have different burst sizes.
Viruses of the same type have almost the same burst size. The burst size is an
important parameter of virus replicability.

dx

dt
¼ λx 1� xþ y

C

� �

� βxv

dy

dt
¼ βxv� δy

dv

dt
¼ bδy� βxv� γv:

(3)
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Considering this last model as a starting point of our discussion of mathematical
models of oncolytic virotherapy, we first show some analytical results. In this
model, there are two threshold values for the burst size. When the burst size is
smaller than the first threshold value, virotherapy always fails. When the burst size
is in the between of the two threshold values, we have a partial success of
virotherapy represented by the stable positive equilibrium solution. Since the tumor
load is a decreasing function of the burst size, the minimum tumor load can be
reached by genetically increasing the burst size of the virus up to the second
threshold value. If the set in which the positive equilibrium solution is stable has
more than one open intervals, we can increase the burst size up to the supreme
value of this set, and still have stable partial therapeutic success with even lower
tumor load. Once the burst size is greater than the second threshold value, there are
one or three families of stable periodic solutions to the system of virotherapy
dynamics.

For simplicity, the above system can be non-dimensionalized by setting τ ¼ δt,
x ¼ Kx̂, y ¼ Kŷ, v ¼ Kv̂, and rename parameters r ¼ λ, a ¼ βK, and c ¼ γ:

Then dropping all hats over the variables and write τ as t, we have

dx

dt
¼ rx 1� x� yð Þ � axv

dy

dt
¼ axv� y

dv

dt
¼ by� axv� cv

(4)

It is assumed that all parameters are nonnegative.
Model (4) has three equilibrium points, E0 ¼ 0, 0, 0ð Þ, E1 ¼ 1, 0, 0ð Þ, and the

positive equilibrium Eþ ¼ x ∗ , y ∗ , v ∗ð Þ. The equilibrium E0 is always unstable for all
positive values of the burst size b. The equilibrium E1 is globally asymptotically
stable when 0< b< μ1, and it is unstable when b≥ μ1.

At b ¼ μ1, the positive equilibrium Eþ moves into the domain D ¼
x, y, vð Þ : x≥0, y≥0, v≥0, 0≤ xþ y≤ 1f g, a type of transcritical bifurcation

occurs with E1 and Eþ. As the parameter b increases, while μ1 < b< μ2 and b∈ Ip, Eþ
is locally asymptotically stable. When b> μ1 and b∈ In, Eþ is unstable. Hopf
bifurcations occur for some b≥ μ2, and these bifurcations give rise to one or three
families of periodic solutions. Here, μ1 and μ2 are thresholds, Ip ¼ b> μ1 : H bð Þ>0f g,
In ¼ b> μ1 : H bð Þ<0f g, and H bð Þ is defined next in formula (10).

• E0 is unstable.

• E1 is globally asymptotically stable when b< 1þ c
a ; and unstable when

b≥ 1þ c
a .

• When μ1 < b< μ2, the equilibrium solution Eþ is locally asymptotically stable

Two types of bifurcations occur in the system as the parameter b varies. A
transcritical bifurcation at b ¼ μ1 introduces the equilibrium point Eþ into the
positive invariant domain D. The Hopf bifurcation at some value b> μ1 gives rise
to the periodic solutions. The system (4) is a basic model of the oncplytic
virotherapy. Three equilibrium points can be found: the trivial equilibrium
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E0 ¼ 0, 0, 0ð Þ, E1 1, 0, 0ð Þ, and the positive equilibrium Eþ x ∗ , y ∗ , v ∗ð Þ, where x ∗ ¼
c

a b�1ð Þ, y
∗ ¼ rc ab�a�cð Þ

a b�1ð Þ ab�aþrcð Þ, and v ∗ ¼ r ab�a�cð Þ
a ab�aþrcð Þ :

The Jacobian matrix is given by

J ¼
r� 2rx� ry� av �rx �ax

av �1 ax

�av b �ax� c

0

B

B

@

1

C

C

A

(5)

Proceeding in the linearization process and analyzing the eigenvalues, we find
that the Jacobian matrix evaluated at E0 is given as

J E0ð Þ ¼
r 0 0

0 �1 0

0 b �c

0

B

@

1

C

A
(6)

The obtained eigenvalues of this lower triangular matrix are λ1 ¼ r, λ2 ¼ �1, and
λ3 ¼ �c. Note that λ1 is positive due the r being positive. The other eigenvalues are
negative. Therefore, E0 is unstable. The local unstable invariant manifold lives in
the x�axis. The stable invariant manifolds live in the yv�plane. This observation
might be interpreted by saying that in the absence of viruses and the infected tumor
cells, the tumor cells will grow away from E0.

The Jacobian matrix evaluated at E1 is given by

J E1ð Þ ¼
�r �r a

0 �1 a

0 b �a� c

0

B

@

1

C

A
(7)

The eigenvalues are λ1 ¼ �r, which is clearly negative, and

λ2,3 ¼ 1
2 � 1þ aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a� cð Þ2 þ 4ab
q

� �

. λ2, the eigenvalue with negative

square root, is negative as well. However, for λ3, it is not so clear when it is negative.
Computations in [7], show that for 1< b< 1þ c

a, E1 is a global asymptotically stable.

This result can be obtained by applying appropriate Lyapunov functions such as
V1 x, y, vð Þ ¼ yþ v and V2 x, y, vð Þ ¼ 1

2 ab aþ cð Þy2 þ a2byvþ 1
2 a

2v2. When the value
of b exceeds the threshold μ1 ¼ 1þ c

a, E1 becomes unstable. The system exhibits a

transcritical bifurcation with bifurcation value μ1 and changes stability as this
parameter varies near the bifurcation value. When b> μ1, the positive equilibrium
point Eþ appears. Proceeding with the linearization, the Jacobian materix at Eþ is
given by

J Eþð Þ ¼
r� 2rx� ry� av �rx �ax

av �1 ax

�av b �ax� c

0

B

B

@

1

C

C

A

: (8)

To analyze the more complicated eigenvalue expressions, we apply the so
called Routh-Hurwitz criterion on the associated characteristic polynomial

P λð Þ ¼ λ3 þ a1λ
2 þ a2λþ a3, where a1 ¼ rcþab�aþabc

a b�1ð Þ , a2 ¼ rc bcþb�1ð Þ
a b�1ð Þ2 þ rc ab�a�cð Þ r�að Þ

a b�1ð Þ ab�aþrcð Þ,

and a3 ¼ rc ab�a�cð Þ
a b�1ð Þ .
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The R-H criterion requires

H1 ¼ a1 >0, H2 ¼
a1 a3

1 a2

�

�

�

�

�

�

�

�

�

�

>0, and H3 ¼

a1 a3 0

1 a2 0

0 a1 a3

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

>0: (9)

Computations based on the R-H stability criterion can lead to the following

expression φ bð Þ ¼ a b�1ð Þ ab�aþrcð Þ
ab�aþrcþabc � bcþb�1ð Þ ab�aþrcð Þ

b�1ð Þ ab�a�cð Þ , [10]. the positive equilibrium Eþ

is locally asymptotically stable if ϕ bð Þ< r� a.
In addition to the transcritical bifurcation described above, the system develops

a Hopf bifurcation for values of b> μ1 resulting in periodic solutions due to the pure
imaginary eigenvalues �i

ffiffiffiffiffi

a2
p

.
In [10], bifurcation analysis was accomplished by the aid of defining a function

H bð Þ ¼ rcΦ b� 1ð Þ
a2 b� 1ð Þ3 ab� aþ rcð Þ

, (10)

where

Φ xð Þ ¼ �a ax� cð Þ axþ rcð Þx2 þ aþ acð Þxþ rcþ acð Þ½ cþ 1ð Þxþ cð Þ axþ rcð Þ

þx ax� cð Þ r� að Þ�

¼ �a3x4 þ a2 3cþ c2 þ r� a� acþ 1
� 	

x3 þ ac 3rcþ 3aþ rc2 þ 3acþ r
�

þr2 � a2
	

x2 þ c2 3arþ 2acrþ r2cþ 2a2
� 	

xþ rc3 rþ að Þ

:

Then, the another threshold, named μ2 can be defined as the smallest number b
of the set I0 ¼ b> μ1 : H bð Þ ¼ 0f g.

The analysis presented in [10] also shows that if c 1þrð Þ
ab�aþrc < 1, then Eþ represents a

partial success of virotherapy at a modest value of b. The expression c 1þrð Þ
ab�aþrc is called

the tumor load.
When the value of b satisfies μ1 < b< μ2, Eþ is locally asymptotically stable. For

values of b< μ1 the positive equilibrium Eþ does not live in the positive invarient
domain D, and as b increases to μ1, the equilibrium point moves into the domain D
and it coalecses with E1. Finally, when b> μ2, periodic solutions will appear as a
result of the Hope bifurcation (Table 1).

Parameter Description Value Dimentions

λ Tumor growth rate 2� 10�2 1=h

δ Death rate of infected tumor cells 1=18 1=h

β Infection rate of the virus 7=10� 10�9 mm3h= virusl

k Immune killing rate of virus 10�8 mm3h= immune cell

b Burst size of free virus 50 viruses/cell

γ Clearance rate of virus 2:5� 10�2 1=h

Table 1.
Pameters’ Description.
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3. Model with innate immune response

Phan and Tian [13] developed the basic model by incorporating innate immune.
The system is given by

dx

dt
¼ λx 1� xþ y

C

� �

� βxv

dy

dt
¼ βxv� μyz� δy

dv

dt
¼ bδy� βxv� kvz� γv

dz

dt
¼ syz� ρz,

(11)

where λ is tumor growth rate, C is the carrying capacity of tumor cell popula-
tion, β is the infected rate of the virus, μ is immune killing rate of infected tumor
cells, δ is death rate of infected tumor cells, b is the burst size of oncolytic viruses
(i.e., the number of new viruses coming out from a lysis of an infected cell), k is
immune killing rate of viruses, γ is clearance rate of viruses, s is the stimulation rate
of the innate immune system, and ρ is immune clearance rate.

We non-dimensionalize the system by setting τ ¼ δt, x ¼ Cx, y ¼ Cy, v ¼
Cv, z ¼ Cz and rename parameters r ¼ λ=δ a ¼ Cβ=δ, c ¼ μC=δ, d ¼ kC=δ, e ¼
γ=δ,m ¼ sC=δ, and n ¼ ρ=δ: Then system (3.1) becomes

dx

dt
¼ rx 1� x� yð Þ � axv

dy

dt
¼ axv� cyz� y

dv

dt
¼ by� axv� dvz� ev

dz

dt
¼ myz� nz:

(12)

All parameters are assumed to be nonnegative. The effects of the innate immune
system on the virotherapy in the model are encoded in the parameters c, d, and m.
To understand how the innate immune system affects the dynamics of oncolytic
virotherapy, they use three combined parameters, the viral burst size b, the relative
immune killing rate K ¼ c=d, and the relative immune response decay rate N ¼
n=m, to describe the solution behaviors of the model. Note that K represents the
ratio of the rate of immune killing infected tumor cells over the rate of immune
killing viruses, which can be considered as a relative immune killing rate of viral
therapy since it describes the ability of the innate immune system destroying infec-
tion versus destroying viruses.

The system (12) have the following equilibrium points;
E0 ¼ 0, 0, 0, 0ð Þ,
E1 ¼ 1, 0, 0, 0ð Þ,
E2 ¼ e

a b�1ð Þ ,
re ab�a�eð Þ

a b�1ð Þ ab�aþreð Þ ,
r ab�a�eð Þ
a ab�aþreð Þ , 0

� �

,

E3 ¼ 1�N � aA
r ,N,A, b�1ð ÞN�eA

cNþdA

� �

,

E4 ¼ 1�N � v2
q ,N, v2,

b�1ð ÞN�ev2
cNþdv2

� �

, and

E5 ¼ 1�N � v3
q ,N, v3,

b�1ð ÞN�ev3
cNþdv3

� �

.
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Where N ¼ n=m, A ¼ �a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 � 3a1
p

� �

=3, a1 ¼ rN
a2 � cd �aþ aN � eþ d

c

� 	

, and

a2 ¼ c
dN þ r

a N � 1ð Þ.
The analysis of model (12) is similar but more complicated than the basic model

proposed by Tian. For details, see [13].
Now we describe some results of Phan and Tian work, [13]. It is clear that if no

tumor cells existed, then there exists the equilibrium point E0. If the effect of the
immune system and the viruses is neglected, then the system has another equilib-
rium point E1 with only tumor cells. This happens when the viruses are not power-
ful due to the burst size being smaller than some critical value. The equilibrium E2

exists if the burst size is greater than the critical value (threshold), meaning that the
viruses are powerful. With some conditions on the parameter K and with another
burst size critical value, two newly formed equilibrium points will be born for
values of b exceed the critical point.

Analysis and numerical simulation can show the existence of two types of bifur-
cations around the threshold values; the transcritical bifurcation which occurs with
the equilibrium points E1 and E2, and a Hopf bifurcation that occurs for larger
values of the burst size b.

Due to the complexity of expressions and knowing that it is impossible to find
closed forms of bifurcation parameters, especially for the positive equilibrium
points E3, E4, and E5, numerical simulations become a need in order to capture the
different behavior over the dynamical landscape.

Below the first threshold value of the burst size, the tumor always grows to its
maximum size (carrying capacity), then as the bfurcation parameter b passes the
first threshold value, the first locally stable positive equilibrium is born through the
transcritical bifurcation. When the parameter value is at or exceeds the second
threshold, families of periodic solutions arise from the Hopf bifurcation leading to
undetectible level of tumor load.

4. Fractional derivative approach

Fractional derivative is a generalization of the usual derivative to include all orders
of derivations. It can be traced back to the times of the invention of the calculus itself.
The question about the 1=2 derivative was first asked by L’hopital as a reply to
Leibniz letter which introduces the notation of the nth derivative. Most of biological
systems have long-range temporal memory. Modeling such systems by fractional
models provides the systems with a long-time memory and extra degrees of freedom.
Despite of the fact that differential equations with integer-orders have long been used
in modeling cancer, the fractional-order differential equations (FODEs) have been
recently used to model many biological phenomena. One of the advantages of using
FODEs to model such phenomena is that models become more consistent with the
biological model. This is due to the fact that fractional order derivatives can capture
the memory and hereditary properties of those models [14]. The classical mathemat-
ical models with integer-orders ignore the intermediate cellular interactions and
memory effects. For example, the kinetic of the viral decline in patients responding to
interferon is characterized by bi-phase shape following a delay about 8� 9 hours,
likely to be the sum of interferono-pharmacokinetics and pharmaco-dynamics as well
as the intracellular delay of the ciral life cycle [15]. Therefore, modeling of the
biological systems by fractional order differential equations has more advantages than
classical integer-order mathematical modeling, in which such effects are neglected.
Abu-Rqayiq and Zannon [16] have formulated Tian’s model using Caputo derivative
definition. The system can be formulated as
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Dα
t x ¼ rαx 1� x� y

� 	

� aαxv

Dα
t y ¼ aαxv� y

Dα
t ¼ bαy� aαxv� cαv:

(13)

where Dα
t is the Caputo fractional derivative and 0< α≤ 1. We assume that all

parameters are nonnegative.
The fractional order integration and fractional order can be defined as: the

definition of fractional order integration and fractional order. Let L1 ¼ L1 a, b½ � be
the class of Lebesgue integrable functions on a, b½ �, a< b<∞. The fractional integral
of order ν∈

þ of the function f tð Þ, t>0 f :  ! ð Þ is defined by

Iva ¼
1

Γ vð Þ

ðt

q
t� sð Þv�1f sð Þds, t>0, (14)

where Γ :ð Þ is the Gamma function.
The fractional derivative of order α∈ n� 1, nð Þ of the function f tð Þ is defined by

several ways, the most common ones are:

1.Riemann-Liouville fractional derivative: Take the fractional integral of order

n� αð Þ and then apply the nth derivative

Da
αf tð Þ ¼ Da

αI
a
n�α,

where D ∗

n ¼ dn

dtn , n ¼ 1, 2, … ;

2.Caputo’s fractional derivative: Start with a nth derivative of the function, then
take a fractional integral of order n� αð Þ

Da
αf tð Þ ¼ Ian�αD

a
nf tð Þ, n ¼ 1, 2, … :

Since fractional-order models possess memory, FODE gives us a more realistic
way to model oncolytic virotherapy and study their dynamics. The presence of a
fractional derivative in a differential equation can lead to an increase in the com-
plexity of the observed behavior. On the other hand, it can show how the solution is
continuously dependent on all the previous states. The numerical results of applying
the fractional approach will be show in Figures 1–4.

Figure 1.
Dynamics of virotherapy when b ¼ 4 and initial values x ¼ 0:5, y ¼ 0:5, and ν ¼ 1:5, for α ¼ 1, α ¼ :8, and
α ¼ :9.
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5. Optimization by control theory

In this section, we develop a model for the controlled infected brain tumor cells.
optimal control theory is applied to the cost functional and is supposed to achieve
the ultimate goal of optimizing that functional and find a best strategy for mini-
mizing the cost of the virotherapy. The goal here is to model, analyze, and explore
optimal ways that can minimize a tumor and the cost of the virotherapy.

Optimal control theory is a branch of the applied mathematics that deals with
finding the best possible control that can take a dynamical system from one state to

Figure 4.
Dynamics of Tumor cells vs infected tumor cells of the model when α ¼ :98.

Figure 2.
Damped oscillators when b ¼ 27 and initial values x ¼ 0:5, y ¼ 0:5, and ν ¼ 1:5, for α ¼ :96, α ¼ :98, and
α ¼ 1.

Figure 3.
Dynamics of model when b ¼ 28 and initial values x ¼ 0:5, y ¼ 0:5, and ν ¼ 1:5, for α ¼ :96, α ¼ :98, and
α ¼ 1.
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another. The Hamiltonian of optimal control theory was developed by the Russian
mathematician Lev Pontryagin as a part of his investigation into the maximum
principle. Pontryagin proved that the necessary condition for solving certain
optimal control problems is that the control should be chosen in such a way that
minimizes the Hamiltonian, [17].

The general form of the control function u tð Þ is given by

J u tð Þð Þ ¼ Ψ x Tð Þð Þ þ
ð1

0
L x tð Þ, u tð Þ, T tð Þð Þdt

where x tð Þ is the system state which evolves according to the state equation

_x ¼ f x tð Þ, u tð Þ, tð Þ x 0ð Þ ¼ x0 t∈ 0,T½ �

The Hamiltonian is defined as

H x,Ψ, u, tð Þ ¼ Ψ
T tð Þf x, u, tð Þ þ L x, u, tð Þ,

where Ψ tð Þ is a vector of costate variables of the same dimension as the state
variable x tð Þ such that, [18]

_Ψ tð Þ ¼ � ∂H

∂x
:

Applying the control theory approach, we reformulate the basic model by intro-
ducing a control function u tð Þ which represents efforts on damaging the tumor cells
AND 1� u tð Þð Þ represents the growth rate of the infected cells. After incorporating
the control u into the basic model, we obtain the following model with control

dx

dt
¼ 1� u tð Þð Þλx 1� xþ y

K

� �

� βxv

dy

dt
¼ βxv� 1� u tð Þð Þδy

dv

dt
¼ bδ 1� u tð Þð Þy� βxv� γv:

(15)

The control is usually assumed to be bounded by maximim value less than 1 and
greater than 0. For our current model, we assume the maximum value is 0:9, a
choice that make our proposed model more realistic from a medical view point.

The objective function will be the function that will host our optimal value u ∗

and it is given by

J u tð Þð Þ ¼
ðT

0
y tð Þ þ 1

2
Bu2 dt:

Where B is a measure of the relative cost of interventions associated to the
control u tð Þ. Our goal is to minimize the number of the infected tumor cells by
choosing an appropriate strategy that can lower the number of free viruses as well.
As a result of that, the cost of treatment will be lowered.

The admissible set of control functions is defined as

Ω ¼ u �ð Þ∈L∞ 0, t f
� 	

: 0⩽ u tð Þ⩽ umax,∀t∈ 0,T�½ g
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Rescaling the system to ease mathematical treatment, we use same parameter
rescaling that was used for the previous models and we get

dx

dt
¼ 1� uð Þrx 1� x� yð Þ � axv

dy

dt
¼ axv� 1� uð Þy

dv

dt
¼ b 1� uð Þy� axv� cv:

(16)

with fixed initial conditions x 0ð Þ, y 0ð Þ, v 0ð Þ and a fixed final time T.
According to The Pontryagin’s Maximum Principle, if u :ð Þ∈Ω is optimal for

the problem under consideration, the minimizer with the initial conditions and
fixed final time T, then there exists a nontrivial absolutely continuous mapping

Ψ : 0, 1½ � ! 
3.

Now we come to the main result in this section, [19]
System (16) along with the initial conditions and the final time T has a unique

optimal solution x ∗ �ð Þ, y ∗ �ð Þ, v ∗ �ð Þð Þ associated to an optimal control u ∗ð Þ on 0,T½ �:
Moreover, there exists adjoint functions Ψ ∗

1 ,Ψ
∗

1 , and Ψ
∗

3 , such that with
transversality conditions Ψ ∗

i Tð Þ ¼ 0, i ¼ 1, 2, 3: Furthermore,

u ∗ tð Þ ¼ rx 1� x� yð ÞΨ1 � y Ψ2 þ bΨ3ð Þ
B

:

The proof is given in [19].

6. Numerical simulation and discussion

For the simulations and numerical results of the basic model and those of the
fractional approach, we use the same parameter values used in [10] and
summarized in Table 1. We also combing those results in the Figures 1–4 below.
Note that α ¼ 1 represents the simulation of the basic model (2.2), whereas the
other values of α describe the memory of the derivatives of the basic model. The
parameter values are r ¼ 0:36, a ¼ 0:11, and c ¼ 0:2. By considering b ¼ 9, the
following equilibrium points can be obtained E0 ¼ 0, 0, 0, 0ð Þ, E1 ¼ 1, 0, 0ð Þ, E2 ¼
0:6, 0:0730, 2:5729ð Þ. Here the bifurcation parameter values are μ1 ¼ 5 and μ2 ¼
27:766. When 5< b< 27:766, Eþ is locally asymptotically stable while E1 is unstable.
The equilibrium point E0 is always unstable. Figure 1 shows the treatment will
eventually reach the equilibrium point E1 that is locally asymptotically stable.
Figures 2 and 3 show periodic solutions rising from Hopf bifurcation, and Figure 4

Figure 5.
Optimal state variables for the controlled and the uncontrolled systems subject to the initial values x ¼
0:5, y ¼ 0:5, and v ¼ 1:5, b ¼ 4, and the admissible control set versus trajectories without control measures.
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shows the dynamics of tumor cells vs infected tumor cells when α ¼ 0:98 which is
almost the same as the result of the usual derivative α ¼ 1. Eþ is locally asymptot-
ically stable when 5< b< 27:766.

The numerical results of the optimal control system (5.2) can be obtained by
implementing forward fourth-order Runge-Kutta method for state system and the
backward one for the adjoint system. The method depends on the choice of an
initial guess for the value of the control u. The optimal control system is estimated
to predict the evolution of the tumors cells relative to specific choices of virus
bust size. Simulation shows the results in time scale of 100 days for burst size b ¼ 4,

Figure 6.
Optimal state variables for the controlled and the uncontrolled systems subject to the initial values x ¼
0:5, y ¼ 0:5, and v ¼ 1:5, b ¼ 9, and the admissible control set versus trajectories without control measures.

Figure 7.
Damped oscillators appear for the controlled and the uncontrolled systems subject to the initial values x ¼
0:5, y ¼ 0:5, and v ¼ 1:5, b ¼ 26, and the admissible control set versus trajectories without control measures.

Figure 8.
The optimal control u ∗ for the Oncolytic virotherapy model subject to the initial values x ¼ 0:5, y ¼ 0:5, and
v ¼ 1:5, b ¼ 9, and the admissible control.
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200 days for burst size b ¼ 9, and 1000 days for the oscillation to capture that
behavior as shown in the Figures 5–8.

Numerical results show that the existence of the control can improve the growth
of the normal cells until approximately 60 days of the therapy and will be stabilized
after then. Whereas the number of the infected cells will be dropped significantly
after the fifth day of the treatment until they are completely terminated in the day
50. The dynamics is hugely determined by the burst size in addition to the other
control parameter values. The numerical results clearly show that the virotherapy
can reduce the tumor load within days of the therapy and reduces number of the
free viruses that are needed in the therapy. As a result, the cost of the therapy is
minimized. See Figures 5–8.
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